

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment.

Designed capacitor's quality meets IEC60384.

2. Part Number System

2.1 **Product Type**

Code	CBE
Product Type	Radial

2.2 <u>Capacitance code</u>

Code	105	106	107
Capacitance (µF)	1.0	10	100

2.3 **Rated voltage code**

Code	0J	1A	1C	1E	1V	1H
Voltage (WV)	6.3	10	16	25	35	50

2.4 Capacitance tolerance

Code	M	V	
Tolerance Range	±20%	-10%~+20%	

2.5 Environmental requirements

Code	R	Н
Environmental requirements	ROHS Requirements Remark:Product Set PVC Sleeve	ROHS Requirements and Halogen Free Remark:Product Set PET Sleeve

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	1		
STANDARD MANUAL						

2.6 **Products Series Code**

Code	CZ
Series	CD11CZ

2.7 **Diameter**

Code	C	D	E	F	G
Diameter	4	5	6.3	8	10

2.8 Case length

- (1) When the code is number, it represent the actual height.(e.g. The code 07 indicates that the height is 7mm; The code 10 indicates that the height is 10mm)
- (2) When the code is number + alphabet, please check the following the table:

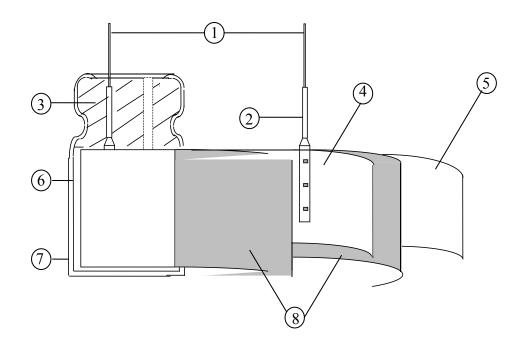
Code	1A	1B	1C	1D	2A	3A
Case Length(mm)	11.5	12.5	13.5	14.5	21.5	31.5

2.9 Packaging

Code	RR	R2	T2	TB	Т3	T5
Packaging	Bulk	F8,Lead Pitch=2. 5mm, Bulk	Lead Pitch=2.0mm Taping	Lead Pitch=2.5mm Taping	Lead Pitch=3.5mm Taping	Lead Pitch=5.0mm Taping
Code	Т7		CA	СВ	CC	CD
Packaging	Lead Pitch=7.5mm Taping		Cutting the feet long=3.0mm	Cutting the feet long=3.5mm	Cutting the feet long=4.0mm	Cutting the feet long=4.5mm

Note: The length of the product's cut feet starts from A=3.0mm. Every time it increases by 0.5mm, the English word is pushed forward one place, as shown in the following table:

Cutting length(mm)	Code
3.0±0.5	CA
3.5±0.5	СВ
4.0±0.5	CC
4.5±0.5	CD
5.0±0.5	CE
6.0±0.5	CG
And so on	


2.10 **Suffix: Inner Code**

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	2		
STANDARD MANUAL						

3. Construction:

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material			
1	Lead line	Tinned CP wire (Pb Free)			
2	Terminal	Aluminum wire			
3 Sealing Material		Rubber			
4	Al-Foil (+)	Formed aluminum foil			
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil			
6 Case		Aluminum case			
7	Sleeve	PET			
8	Separator	Electrolyte paper			

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	3		
STANDARD MANUAL						

Radial aluminum electrolytic capacitor CD11CZ Series

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and

tests is as follows:

Ambient temperature :15°C to 35°C
Relative humidity : 45% to 85%
Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature $: 20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(6.3\sim50\text{WV})$ -40°C to 105°C.

As to the detailed information, please refer to table 1.

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	4		
STANDARD MANUAL						

Table	e 1									
	Item		PERFORMANCE							
4.1	Nominal capacitance (Tolerance)	Condition> Measuring Freque Measuring Voltage Measuring Tempe	ge erature	: Not : : 20±		nan 0.5				
4.2	Leakage Current	(1k Ω ± 10 Ω) so The leakage curre of the following α Criteria> I ≤0.01CV or 3 (μ I: Leakage curren C: Capacitance (μ V: Rated DC wor	After DC Voltage is applied to capacitors through the series protective resistor $(1k \Omega \pm 10 \Omega)$ so that terminal voltage may reach the reacted use voltage. The leakage current when measured in 2 minutes shall not exceed the values of the following equation. Criteria> $I \le 0.01 \text{CV or } 3 \text{ (μA$)} \text{ whichever is greater.}$ I: Leakage current (\$\mu\$A\$) C: Capacitance (\$\mu\$F\$) V: Rated DC working voltage (V)					tage.		
4.3	Tan δ	<condition> See 4.1 Nominal capacitance, for measuring frequency, voltage and temperature. <criteria> Working voltage (v) 6.3 10 16 25 35 50 tan δ(max.) 0.24 0.21 0.18 0.15 0.13 0.12 For capacitance value >1000uF, add 0.02per another 1000uF</criteria></condition>								
4.4	Rated voltage (WV) Surge voltage (SV)	WV (V.DC) SV (V.DC)	6.3			16 20	25 32	35 44	50 63	
4.5	Impedance	<pre><condition> Measuring frequency:100kHz; Measuring temperature:20±2°C Measuring point: 2mm max. from the surface of a sealing rubber on the lead wire. <criteria> (20°C)Less than the initial limit(See Point 5).</criteria></condition></pre>								

Issued-date: 2022-11-05 Name Specification Sheet – CD11CZ						
Revision	В		Page	5		
STANDARD MANUAL						

STEP Testing Temperature(°C) Time		1	<condition></condition>	<condition></condition>							
1 20±2 Time to reach thermal equilibrium 2 -40±3 Time to reach thermal equilibrium 3 20±2 Time to reach thermal equilibrium 4 105±2 Time to reach thermal equilibrium 5 20±2 Time to reach thermal equilibrium 5 20±2 Time to reach thermal equilibrium 6 20±2 Time to reach thermal equilibrium 7 20±2 Time to reach thermal equilibrium 8 20±2 Time to reach thermal equilibrium 9 20±2 Time to reach thermal equilibrium 1 20±2 Time to reach thermal equilibrium 1 20±2 Time to reach thermal equilibrium 2 20±2 Time to reach thermal equilibrium 1 20±2 Time to reach thermal equilibrium 1 20±2 Time to reach thermal equilibrium 1 20±2 Time to reach thermal equilibrium 2 20±2 Time to reach thermal equilibrium 3 20±2 Time to reach thermal equilibrium 4 105±2 Time to reach thermal equilibrium 5 20±2 Time to reach thermal equilibrium 5 20±2 Time to reach thermal equilibrium 5 20±2 Time to reach thermal equilibrium 6 20% of their origin at +20°C, measured equilibrium 1 4.3 Strength value at +105°C shall be within the limit of 4.3. The leakage current value at +105°C shall not more than 8 times the specified value. c. At-40°C, impedance (Z) ratio shall not exceed the value of the following table. Rated Voltage (V) 6.3 10 16 25 35 50 Z-25°C/Z+20°C 4 4 4 3 2 2 2 2 Z-40°C/Z+20°C 8 7 5 3 3 3 3 d. Capacitance, tan δ, and impedance shall be measured at 120Hz. *Condition* Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for 10±1 seconds. Bending strength of terminals Fixed the capacitor, applied force to bent the terminal (1-4 mm from the rubber) for 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds.											
3			1				Time to reach thermal equilibrium			librium	
4 105±2 Time to reach thermal equilibrium Criteria> a. At +105°C, capacitance shall be within ±20% of their origin at +20°C, measured capacitance, tan δ shall be within limit of 4.3. The leakage current value at +105°C shall not more than 8 times the specified value. b. At step 5, tan δ shall be within the limit of 4.3. The leakage current value shall not more than the specified value. c. At-40°C, impedance (Z) ratio shall not exceed the value of the following table. Rated Voltage (V) 6.3 10 16 25 35 50 Z-25°C/Z+20°C 4 4 3 3 2 2 2 Z-40°C/Z+20°C 8 7 5 3 3 3 3 d. Capacitance, tan δ, and impedance shall be measured at 120Hz. Condition> Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for 10±1 seconds. Bending strength of terminals Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds. Diameter of lead wire Tensile force Bending force			2	$2 -40 \pm 3$			•			librium	
Solution Condition			3	20:	±2		Time	to rea	ch therr	nal equi	librium
Temperature characteristic IEC-60384-4 4.12 Temperature characteristic IEC-60384-4 4.12 Temperature characteristic IEC-60384-4 4.12 b. At step 5, tan δ shall be within the limit of 4.3. The leakage current value at +105°C shall not more than 8 times the specified value. b. At step 5, tan δ shall be within the limit of 4.3. The leakage current value shall not more than the specified value. c. At-40°C, impedance (Z) ratio shall not exceed the value of the following table. Rated Voltage (V) 6.3 10 16 25 35 50 Z-25°C/Z+20°C 4 4 4 3 2 2 2 2 Z-40°C/Z+20°C 8 7 5 3 3 3 3 d. Capacitance, tan δ, and impedance shall be measured at 120Hz. **Condition** Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for 10±1 seconds. Bending strength of terminals Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds. Diameter of lead wire Tensile force Bending force			4	105	±2		Time	to rea	ch therr	nal equi	librium
a. At +105°C, capacitance shall be within ±20% of their origin at +20°C, measured capacitance, tan δ shall be within limit of 4.3. The leakage current value at +105°C shall not more than 8 times the specified value. b. At step 5, tan δ shall be within the limit of 4.3. The leakage current value shall not more than the specified value. c. At-40°C, impedance (Z) ratio shall not exceed the value of the following table. Rated Voltage (V) 6.3 10 16 25 35 50 Z-25°C/Z+20°C 4 4 4 3 2 2 2 2 Z-40°C/Z+20°C 8 7 5 3 3 3 3 d. Capacitance, tan δ, and impedance shall be measured at 120Hz. Condition> Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for 10±1 seconds. Bending strength of terminals Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds. Diameter of lead wire Tensile force Bending force			5						librium		
Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for 10±1 seconds. Bending strength of terminals Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds. Terminal Strength Diameter of lead wire Tensile force Bending force	4.6	characteristic	a. At +105°C measured. The leaka the specific b. At step 5 The leaka c. At-40°C, table. Rated Voltage Z-25°C/Z+20	I capacitance, to ge current value. 5, tan δ shall be to ge current value impedance (Z (V) 6.3 (C) 4 (C) 8	tan δ shape at $+\frac{1}{2}$ the within the within the shall of the shape at $-\frac{10}{4}$ and $\frac{10}{7}$	nall be value of $105 ^{\circ}\text{C}$ s and the lind of multiple of $160 ^{\circ}$ shall in $160 ^{$	within shall n mit of 4 ore that act exc	limit of ot more 4.3 . and the second the $\frac{35}{2}$	specified by the specif	8 times d value. of the	
0.5mm and less 5 (0.51) 2.5 (0.25) Over 0.5mm to 0.8mm 10 (1.0) 5 (0.51) Criteria>	4.7	Strength	Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for 10±1 seconds. Bending strength of terminals Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rubber) for 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds. Diameter of lead wire Tensile force N (kgf) Bending force N (kgf) 0.5mm and less 5 (0.51) 2.5 (0.25) Over 0.5mm to 0.8mm 10 (1.0) 5 (0.51)								

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	6		
STANDARD MANUAL						

4.8	Load Life test IEC-60384-4 4.13	at a temperature of 105±2 ripple current for 1000+45 voltage shall not exceed to should be tested after 16 b The result should meet the Criteria> The characteristic shall me Leakage current	et the following requirements. Value in 4.2 shall be satisfied				
		Capacitance Change tan δ	Within ±20% of initial value. Not more than 200% of the specified value.				
		Appearance	There shall be no leakage of electrolyte.				
		<condition></condition>					
		The capacitors are then stored with no voltage applied at a temperature 105±2°C for 1000+48/0 hours. Following this period the capacitors shall removed from the test chamber and be allowed to stabilized at room temperature for 4~8 hours. Next they shall be connected to a series limit resistor(1k±100Ω) with D.C. rated voltage applied for 30min. After white the capacitors shall be discharged, and then, tested the characteristics. Criteria> The characteristic shall meet the following requirements.					
		Leakage current	Value in4.2 shall be satisfied				
	Shelf	Capacitance Change	Within ±20% of initial value.				
4.9	Life test IEC-60384-4 4.17	tan δ	Not more than 200% of the specified value.				
		Appearance	There shall be no leakage of electrolyte.				
			stored more than 1 year, the leakage current oltage through about $1K\Omega$ resistor, if necessary.				

Issued-date: 2022-11-05 Name Specification Sheet – CD11CZ						
Revision	В		Page	7		
STANDARD MANUAL						

		<condition></condition>					
		Test temperature:15~35°C					
		Series resistor: $R = \frac{100\pm5}{C}$	<u>0</u>				
		R: protective resistor (KC: nominal capacitance)					
		Test voltage: Surge voltag					
	Surge		Each cycles lasts for 6±0.5min				
4.10	test IEC-60384-4 4.9	<pre>Criteria></pre>	0±5 s "OFF" for 5±0.5min.				
	12C-00364-44.9	Leakage current	Not more than the specified value.				
		Capacitance Change	Within $\pm 15\%$ of initial value.				
		$\tan \delta$	Not more than the specified value.				
		Appearance	There shall be no leakage of electrolyte.				
		Пррешинее	There shall be no leakage of electrolyte.				
		hypothesizing that over v					
		The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions.					
		Vibration frequency range : 10Hz ~ 55Hz					
		Peak to peak amplitude : 1.5mm					
		Sweep rate :	10 Hz ~ 55 Hz ~ 10 Hz in about 1 minute				
		Mounting method:					
			eter greater than 12.5mm or longer than 25mm				
		must be fixed in place w	•				
		_	77711				
	Vibration	4 1	Within 30°				
	test	4mm or le	ess				
4.11	IEC-60384-4 4.8						
			<u>// *</u>				
			_ \				
		<criteria></criteria>	To be soldered				
		After the test, the following	ng items shall be tested:				
		Inner construction	No intermittent contacts, open or short circuitin No damage of tab terminals or electrodes.				
			No mechanical damage in terminal. No leakage				
			of electrolyte or swelling of the case. The				
	I		markings shall be legible.				

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	8		
STANDARD MANUAL						

4.12	Solderability Test IEC-60384-4 4.6	Soldering temperature Dipping depth Dipping speed Dipping time Criteria>	ted under the following conditions: : 245±3°C : 2mm : 25±2.5mm/s : 3±0.5s
		Coating quality	being immersed
4.13	Resistance to solder heat Test IEC-60384-4 4.5	260±5°C for 10±1seconds the body of capacitor.	shall be immersed into solder bath at s or 400±10°C for 3~4 seconds to 1.5~2.0mm from the left under the normal temperature and normal effore measurement. Not more than the specified value. Within ±10% of initial value. Not more than the specified value. There shall be no leakage of electrolyte.
4.14	Damp heat test IEC-60384-44.12	be exposed for 500±8 hou	No.4.12 methods, capacitor shall ars in an atmosphere of 90~95%R H .at change shall meet the following requirement. Not more than the specified value. Within ±20% of initial value. Not more than 120% of the specified value. There shall be no leakage of electrolyte.

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ		
Revision	В		Page	9
	STA	ANDARD MANUAL		

	T			
		<condition></condition>		
		Temperature cycle: According to IEC6038 oven, the condition acc		thods, capacitor shall be placed in an
		Tempe	Ť	Time
		(1)+20°C		≤3 Minutes
		(2) -40°C		30±2 Minutes
	Change of	(3) +105°C		30±2 Minutes
4.15	temperature	(1) to (3)=1 cycle, tot	al 5 cycle	
	Test IEC-60384-4 4.7	<criteria> The characteristic shall</criteria>		-
		Leakage current	Not more	e than the specified value.
		tan δ	Not more	e than the specified value.
		Appearance	There sh	all be no leakage of electrolyte.
4.16	Vent test IEC-60384-4 4.16	≥Ø6.3 with vent. D.C. test The capacitor is connect Then a current selected <table 2=""> Diameter (mm) 22.4 or less <criteria></criteria></table>	DC Current 1	ous conditions such as flames or

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ		
Revision	В		Page	10
	STA	ANDARD MANUAL		

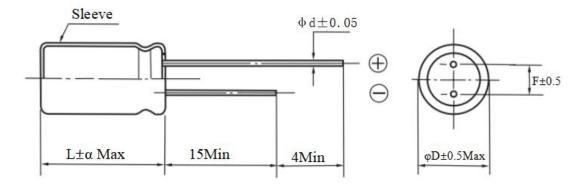
5. CASE SIZE & MAX RIPPLE CURRENT

Size φ D X L (mm) , Maximum allowable Ripple Current (mA) at 105 $^{\circ}$ C 100kHz Maximum Impedance(Ω) at 20 $^{\circ}$ C 100 kHz

	WV		6.3(0J)			10(1A)			16(1C)	
μF	ITEM	D×L	Impedance	Ripple Current	D×L	Impedance	Ripple Current	D×L	Impedance	Ripple Current
	15							4x7	3.3	70
	22				4x7	3.3	70	5x7	1.7	110
	33	5x7	1.7	110	5x7	1.7	110	6.3x7	0.8	160
	47	5x7	1.7	110	6.3x7	0.8	160	6.3x7	0.8	160
	68	6.3x7	0.8	160	6.3x7	0.8	160	8x7	0.5	200
1	100	6.3x7	0.8	160	6.3x7 8x7	0.8 0.5	180 200	8x7	0.5	200
1	150	8x7	0.5	200	8x7	0.5	200			
2	220	8x7	0.5	200				6.3x7	0.8	160
	170				6.3x7	0.8	160			

Vol	tage		25(1E)		35(1V)		50(1H)			
μF	Code	D×L	Impedance	Ripple Current	D×L	Impedance	Ripple Current	D×L	Impedance	Ripple Current
4.7	475							4x7	3.5	60
6.8	685				4x7	3.3	70	5x7	2.0	100
10	106	4x7	3.3	70	5x7	1.7	110	6.3x7	1.5	120
22	226	5x7	1.7	110	6.3x7	0.8	160	8x7	0.7	150
33	336	6.3x7	0.8	160	8x7	0.5	200			
47	476	8x7	0.5	200						

Remark:


- 1)Specification are subject to change without notice should a safety or technical concern arise regarding the product ,please be sure to contact our sales offices;
- 2)The sizes in the above table are all general specifications; If you need other specifications, please contact us.

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ		
Revision	В		Page	11
	STA	ANDARD MANUAL		

6. Dimensions:

Unit: mm

ФД	4.0	5.0	6.3	8.0			
F	1.5	2.0	2.5	3.5			
Фф		0.45					
α		1	.0				

7. Multiplier for Ripple Current

Frequency coefficient

Coefficient (Hz) Cap(μF)	120	1K	10K	100K
≤180	0.55	0.70	0.75	1.0
>180	0.60	0.75	0.85	1.00

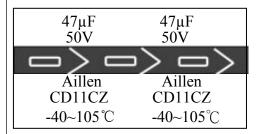
Temperature coefficient

Ambient Temperature(℃)	105	85	≤70
Coefficient	1.0	1.5	2.0

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ		
Revision	В		Page	12
	STA	ANDARD MANUAL		

8. Marking:

Unless otherwise specified. Capacitor shall be clearly marked on it body.

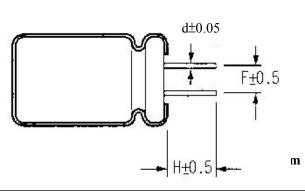

(1) Brand: Aillen

(2) Polarity:

(3) Nominal capacitance: 47μF
(4) Rated voltage: 50V
(5) Series: CD11CZ

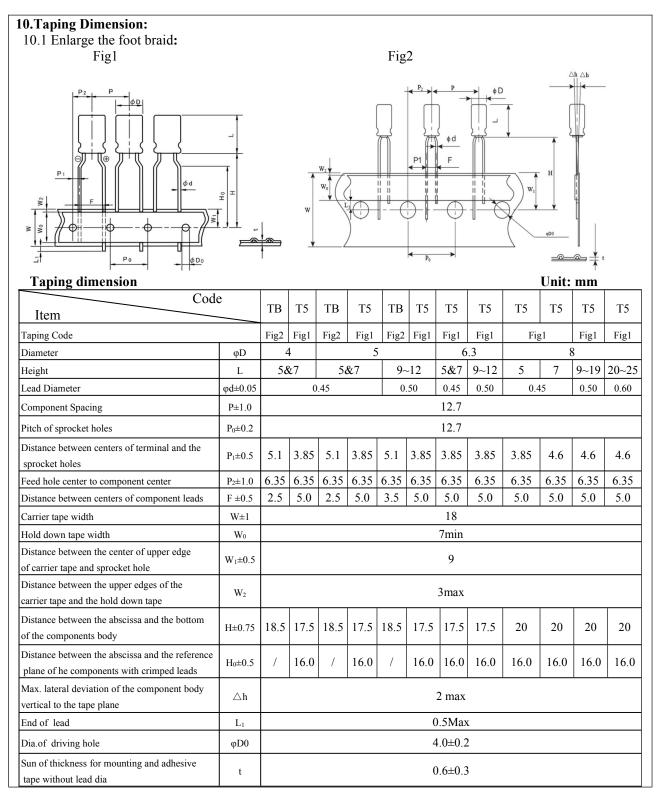
(6) Temperature Range: -40~+105°C

Casing Type:


Sleeve and printing color: Gold Printing on Dark green Sleeve.

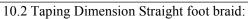
Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ		
Revision	В		Page	13
	STA	ANDARD MANUAL		

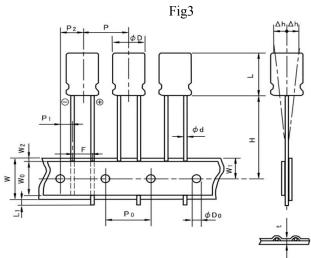
9. Forming Dimension


Cutting Type

Shape Code	фD	Ф4	Ф 5	ф 6. 3	Ф8
	F	1.5	2.0	2.5	3.5
CB Cutting-3.5mm	Н	3.5	3.5	3.5	3.5
	d	0.45	0.45	0.45	0.45/0.50
Shape Code	фD	Ф4	Ф 5	ф 6. 3	Ф8
	F	1.5	2.0	2.5	3.5
CC Cutting-4.0mm	Н	4.0	4.0	4.0	4.0
	d	0.45	0.45	0.45	0.45/0.50
Shape Code	фD	Ф4	Ф 5	ф 6. 3	Ф8
	фD F	Φ4 1.5	ф5 2.0	φ 6. 3 2.5	Φ8 3.5
CD					
	F	1.5	2.0	2.5	3.5
CD	F H	1.5	2.0	2.5	3.5 4.5
CD Cutting-4.5mm	F H d	1.5 4.5 0.45	2.0 4.5 0.45	2.5 4.5 0.45	3.5 4.5 0.45/0.50
CD Cutting-4.5mm	F H d	1.5 4.5 0.45 Ф4	2.0 4.5 0.45 φ5	2.5 4.5 0.45 φ 6. 3	3.5 4.5 0.45/0.50 Φ8

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	14		
STANDARD MANUAL						





Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	15		
STANDARD MANUAL						

Radial aluminum electrolytic capacitor CD11CZ Series

Taping dimension Unit: mm

raping dimension				C 11100 111111
Item	Code	Т2	ТВ	Т3
Taping Code		Fig1	Fig1	Fig1
Diameter	φD	5	6.3	8
Height	L		5~7	
Lead Diameter	φd±0.05	0.45	0.45	0.45
Component Spacing	P±1.0		12.7	
Pitch of sprocket holes	P ₀ ±0.2		12.7	
Distance between centers of terminal and the sprocket holes	P ₁ ±0.5	5.1	5.1	4.6
Feed hole center to component center	P ₂ ±1.0	6.35	6.35	6.35
Distance between centers of component leads	F ±0.5	2.0	2.5	3.5
Carrier tape width	W±1	18		
Hold down tape width	W_0	7min		
Distance between the center of upper edge of carrier tape and sprocket hole	W ₁ ±0.5	9		
Distance between the upper edges of the carrier tape and the hold down tape	W ₂	3max		
Distance between the abscissa and the bottom of the components body	H±1	17.5	17.5	20.0
Distance between the abscissa and the reference plane of ghe components with crimped leads	H ₀ ±0.5		/	
Max. lateral deviation of the component body vertical to the tape plane	Δh		2 max	
End of lead	L_1	0.5Max		
Dia.of driving hole	φD0	4.0±0.2		
Sun of thickness for mounting and adhesive tape without lead dia	t		0.6±0.3	

When using Aluminum Electrolytic Capacitors, please pay attention to the points listed below.

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	16		
STANDARD MANUAL						

Radial aluminum electrolytic capacitor CD11CZ Series

If the following types of electrical loads are applied to Aluminum Electrolytic Capacitors, rapid deterioration of electrical property occurs:

- -Reverse voltage
- -Over voltage exceeding rated working voltage
- -Current exceeding rated ripple current
- -Severe charging/discharging

At such times, severe heat is generated, gas is emitted, then electrolyte leaks from the sealed area, and pressure relief vent operates due to increase of internal pressure. In the worst case, explosion or igniton may occur, and along with destruction of the capacitor combustibles may burst out.

1.CAUTION DURING CIRCUIT DESIGN

1)OPERATIONAL ENCIRONMENT, MOUNTING ENVIRONMENT AND CONDITIONS

Ensure that operational and mounting conditions follow the specified conditions detailed in the catalog and specification sheets

2)OPERATING TEMPERARURE, RIPPLE CURRENT AND LOAD LIFE.

Operating temperature and applied ripple current should be within the specified value in the catalog or specification sheets.

Do not use Aluminum Electrolytic Capacitors at temperature which exceeds the specified category temperatures range.

Do not apply excessive current to the capacitors, which exceeds the specified rated ripple current.

During circuit design ,please ensure that capacitors are selected to match with the lifetime requirements of the application

3)APPLICATION

Aluminum Electrolytic Capacitors are normally polarized .Reverse voltage or AC coltage should not be applied. When polarity may flip over, non-polar type should be used, but the non-polar type cannot be used for AC.

Standard Aluminum E lectrolytic Capacitors are not suitable for rapid charge and discharge applications. Please consult with Shanghai Suzuki Electronics or sales office of Suzuki Techno Group in your area about special designed capacitors for rapid charge and discharge.

4)APPLIED COLTAGE

Do not exceed the rated voltage of capacitors

5)INSULATION

Aluminum Electrolytic Capacitors should be electricially isolated from the following.

Aluminum case, cathode lead wire, anode lead wire and circuit pattern;

Auxiliary terminals of snap-in type, anode terminal, outward terminals and circuit pattern.

The PVC sleeve of Aluminum Electrolytic Capacitors is not recognized as an insulator, and therfore,

the standard capacitor should not be used in a place where insulation function is needed.

Please consult with Shanghai Suzuki Electronics or sales office of Suzuki Techno Group in your area,

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	17		
STANDARD MANUAL						

if you require a higher grade of insulating sleeve.

6) CONDITIONS OF USE

The following environments should be avoided when suing Aluminum Electrolytic Capacitors.

Damp conditions such as water ,salt water or oil spray or fumes,high humidity or humidity condensation situations;.

Hazardous gas/fumes such as hydrogen sulfide, sulfurous acid gas, nitrous acid, chlorine gas, ammonia or bromine gas;

Exposure of ozone ,ultraviolet rays or radiation;

Severe vibration or shock which exceeds the cinditon specified in the catalog or specification sheets.

7) CONSIDERATION TO ASSEMBLY CONDITION

In designing a circuit, the following matters should be ensured in advance to the capacitor's assembly on the printed circuit board (PC board)

Design the appropriate hole spacing to match the lead pitch of capacitors;

Do not locate any wiring and circuit patterns directly above the capacitor's vent;

Ensure enough free space iabove the capacitor's vent. The recommended space is specified in the catalog or specification sheets;

In case the capacitor's vent is facing the PC board, make a gas release hole on PC board.

The sealing side of the screw terminal type should not face down in the application. When the capacitors are mounted horizontally, the anode screw terminals must be positioned at upper side..

8) CONSIDERATION TO CIRCUIT DESIGN

Any copper lines or circuit patterns should not be laid under the capacitor;

Parts which radiate heat should not be placed close to the reverse side of the Aluminum Electrolytic Capacitors on the PC board.

9) OTHERS

Performance of electrical characteristics of Aluminum Electrolytic Capacitors is affected by variation of operating temperature and frequency. Consider this variation when deaigning the circuit.

Excessive holes and connection hole between both sides on the PC board should be avoided around or under the mounting area of the Aluminum Electrolytic Capacitors on double sided or multilayer PC board.

Torque of tightening screw terminals should not exceed the specified maximum valu which is described in the catalog and specification sheets .

Consider current balance when 2 or more Aluminum Electrolytic Capacitors are connected in parallel. Use bleeding resistors when 2 or more Aluminum Electrolytic Capacitors are connected in series. In this case, the resistors should be connected parallel to the capacitors.

2. CAUTION FOR ASSEMBLING CAPACITORS

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	18		
STANDARD MANUAL						

1) CAUTION BEFORE ASSEMBLY

Aluminum Electrolytic Capacitors cannot be recycled after mounting and applying electricity in unit.

The capacitors, which are removed from PC board for the purpose of measuring electrical characteristics at the periodical inspection, should only be recycled for the same pisition.;

Aluminum Electrolytic Capacitors may accumulate charge naturally during storage. In this case, discharge through a 1KOHM resistor before use;

Leakage current of Aluminum Electrolytic Capacitors may be increased during long storage time. In this case,the capacitors should be subject to voltage treatment through a 1KOHM resistor before use.

2) IN THE ASSEMBLY PROCESS-1

Ensure rated voltage and capacitance of the capacitors before mounting;

Ensure capacitors polarity before mounting;

Do not use a capacitor which has been dropped onto a hard surface;

Do not use a capacitor with damaged or dented cased or seals.

3) IN THE ASSEMBLY PROCESS-2

Capacitors should be mounted after confirmation that hole spacing on PC board matches the lead pitch of the capacitors;

The snap-in type of capacitors should be mounted firmly on the PC board without a gap between the capacitor body and the surface of PC board;.

Avolsd excessive force when clinching lead wire during auto-insertion process;

Avoid excessive shock to capacitors by automatic inserting machine, during mounting, parts inspection or centering operations;

Please utilize supporting material such as strap of adhesive to mount capacitors to PC board when it is anticipated that vibration or shock is applied.

4) SOLDERING

Soldering conditions (temperature,time)should be within the specified conditions which are described in the catalog or specification sheets;

In case lead wire reforming is needed due to inappropriate pitch between capacitor and holes on PC board, stress to the capacitor should be avoided;

In case of maintenance by soldering iron, if it is required to detach the capacitor, it should be removed from PC board after solder has melted sufficiently in order to reduce stress on the lead wires/terminals of the capacitor;

Soldering iron should never touch the capacitor's body.

5)FLOW SOLDERING

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	19		
STANDARD MANUAL						

Radial aluminum electrolytic capacitor CD11CZ Series

Do not dip capacitor's body into melted solder,.It should only be soldered on the reverse side of the PC board on which the capacitors are mounted;

Soldering condition((preheat, soldering temperature, dipping time) should be within the specified standard which is described in the catalog or specification sheets;

Flux should not be adhered to capacitor's body but only to its terminals;

Other devices which are mounted close to capacitors should not touch the capacitors.

6) REFLOW SOLDERING

Reflow soldering conditions(preheat, soldering, temperature, reflow time) should follow the specified standard which is described in the catalog or specification sheets;

Heating standard should depend on surface of the capacitor color or materials when infrared rays are used because the capacitor's heat absorption depends on the surface color or materials. Check heat condition; Standard Aluminum Electrolytic Capacitors cannot withstand two or more reflow processes.

7) HANDLING AFTER SOLDERING

Do not bend or twist the capacitor's body after soldering on PC board;

Do not pick-up or move PC board by holding the soldered capacitors;

Do not hit the capacitors and isolate capacitors from the PC board or other device when stacking PC boards in store.

8) PC BOARD CLEANING

Standard Aluminum Electrolytic Capacitors should be free from halogenated solvents during PC board cleaning after soldering.

9) ADHESIVES AND COATNG MATERIALS

Do not use halogenated adhesives and coating materials to fix Aluminum Electrolytic Capacitors;

Flux between the surface of the PC board and sealing of capacitors should be cleaned before using adhesives or coating materials;

Solvents should be dried up before using adhesives or coating materials;

Do not cover up all the sealing area of capacitors with adhesives or coating materials, make coverage only partial.

3. CAUTION DURING USE OF CAPACITORS IN SETS

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ					
Revision	В		Page	20			
STANDARD MANUAL							

Radial aluminum electrolytic capacitor CD11CZ Series

- 3.1 Do not touch the terminals of capacitors;
- 3.2 Do not connect electrical terminals of the capacitors. Keep the capacitors free from conductive solution, such as acid, alkali and so on;
- 3.3 Ensure the operational environment of the equipment in which the capacitor has been built is within the specified condition mentioned in the catalog or specification sheets.

4. MAINTENANCE

- 4.1 Periodical inspection should be carried out for the capacitors, which are used with industrial equiment; Check the following points at the inspection.
- 4.2 Visual inspection to check pressure relief vent open or leakage of electrolyte;
- 4.3 Electrical characteristics:leakage current,capacitance,dissipation factor and the other points which are mentioned in the catalog or specification sheets.

5. EMERGENCY ACTION

- 5.1 If the pressure relief vent is open and some gas blows out from the capacitor, turn the main switch of the eauipment off or pull out the plug from the power outlet immediately;
- 5.2 During pressure relief vent operation, extremely hot gas(over 100°C) may blow out from the vent area of the capacitors. So keep your face and skin away from capacitors during its operation. In case of eye contact, flush the open eye(s) with large amount of clean water immediately. In case of ingestion, gargle with water immediately, and do not swallow. Also do not touch electrolyte but wash skin with soap and water in case of skin contact.

6. STORAGE CONDITIO

- 6.1Aluminum Electrolytic Capacitors should not be stored in high temperature or in high humidity. The suitable storage condition is 5°C-35°C, and less than 75% in relative humidity;
- 6.2Aluminum Electrolytic Capacitors should not be stored in damp conditions such as water,salt water spray or oil spray;
- 6.3Do not store Aluminum Electrolytic Capacitors in an environment full of hazardous gas (hydrogen sulfide gas, sulfurous acid gas, nitrous acid, chlorine gas, ammonia or btomine gas);
- 6.4 Aluminum Electrolytic Capacitors should not be stored under exposure to ozone ,ultraviolet rays or radiation.
- 6.5 After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω current limiting resistor for a time period of 30 minutes.

7. DISPOSAL

- 1)Please take either of the following actions in case of disposal.

 Incinerarion (high temperature of more than 800°C)after crushing the capacitor's body;
- 2)Consignment to specialists of industrial waste.

Issued-date: 2022-11-05	Name	Specification Sheet – CD11CZ				
Revision	В		Page	21		
STANDARD MANUAL						