Aillen Electronic Technology Limited

Date	Version	Mark	Page	Description	Drafter	Approve
日期	版本	标记	页码	描述	制定者	审批者

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD				
Revision	В		Page	1		
STANDARD MANUAL						

	Aillen Electronic		SMD alu	minum	
	Technology	ele	ectrolytic	capacitor	Aillen
	Limited		CDUD	Series	
					I
1.	Application This specification applies to p Designed capacitor's quality			ytic capacitor (fo	il type) used in electronic equipment.
2.	Part Number Syst	em			
	CAE 156 M 2C H CAE 156 M 2C H Current Composition Comp	Environm Ditage (2.3) e (2.4)	Diameter (2 es (2.6)	L Suffix Packaging (2.9) Length (2.8) .7) Sements (2.5)	
2.1	Draduat Tura				
2.1	Product Type : Code C	AE			
2.2	Capacitance code		1.77		
		155 156			
	1 4 7	1.5 15	150		
2.3	Rated voltage codeCode2C	2D	2 E	2G 2W	
	Code2CVoltage (W.V.)160	200	250	2G 2W 400 450	
2.4	Capacitance tolerance				
		M	V		
	Tolerance Range ±2	20% -1	0%~+20%]	
2.5		R ROHS	ROHS Re	H equirements	
	requirements Requ	uirements		ogen Free	
2.6	CodeUDSeriesCDUD				
Iss	sued-date: 2022-10-09	Name	Specificat	ion Sheet – CD	UD

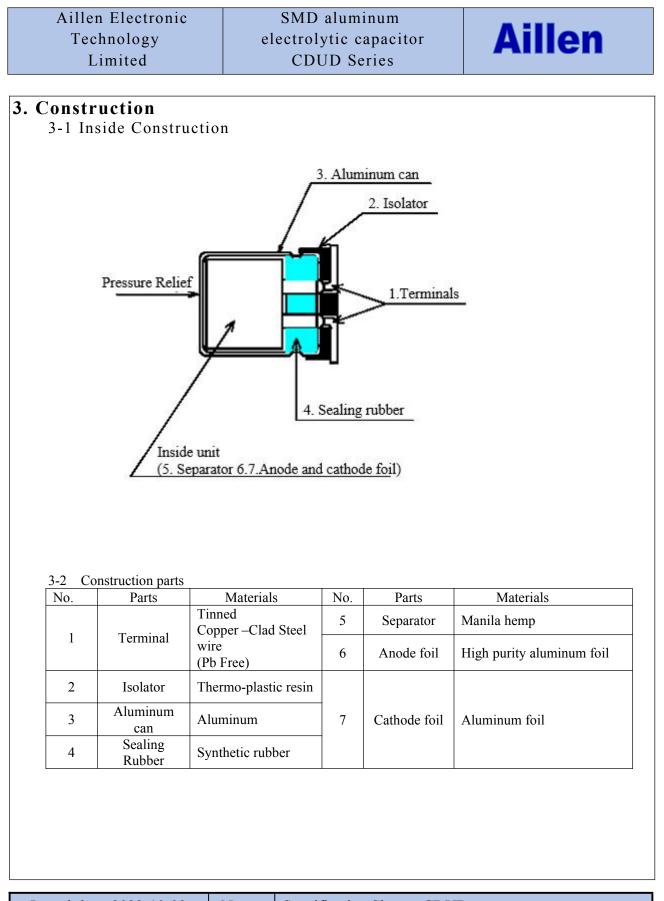
 Revision
 B
 Page
 2

 STANDARD MANUAL

Aillen Electronic Technology Limited	SMD aluminum electrolytic capacitor CDUD Series	Aillen
--	---	--------

2.7 <u>Diameter</u>								
Code	C	D	E	F	G	Ι		
Diameter	4	5	6.3	8	10	12.5		

2.8 <u>Case length</u>


Code	E4	E7	F5	G7	J2	J5	1A	1 B	1C
Case Length(mm)	5.4	5.7	6.5	7.7	10.2	10.5	11.5	12.5	13.5

2.9 Packaging:

Code	TR
Packaging	Taping of Reel

2.10 Suffix: Inner Code

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD				
Revision	В		Page	3		
STANDARD MANUAL						

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD				
Revision	В		Page	4		
STANDARD MANUAL						

	Aillen Electronic		SMD aluminum	
	Technology	el	lectrolytic capacitor	Aillen
	Limited		CDUD Series	Amen
4.	Characteristics			
	Standard atmospheric conditi Unless otherwise specified, th	<u>ons</u> ne standar	d range of atmospheric conditions	for making measurements and
	tests is as follows:	1500	2500	
	Ambient temperature Relative humidity		c to 35°C 5 to 85%	
	Air Pressure		Pa to 106kPa	
	All Tressure	. 00K		
	If there is any doubt about the Ambient temperature		neasurement shall be made within $C \pm 2^{\circ}C$	the following conditions:
	Relative humidity		to 70%	
	Air Pressure		Pa to 106kPa	
	Operating temperature range			· · · · · ·
		e at which	n the capacitor can be operated cor	itinuously at rated voltage
	is -40°C to 105°C.			
	As to the detailed information	, please re	efer to table 1	
I	ssued-date: 2022-10-09	Name	Specification Sheet – CDUI)
17	55000-0010. 2022-10-07	1 vanne	- specification sheet - CDUL	

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD		_			
Revision	В		Page	5			
STANDARD MANUAL							

Aillen Electronic	SMD aluminum	
Technology	electrolytic capacitor	Allen
Limited	CDUD Series	

	ITEM	PERFORMANCE
4.1	Nominal capacitance (Tolerance)	$<$ Condition>Measuring Frequency: 120Hz±12HzMeasuring Voltage: Not more than 0.5VMeasuring Temperature: $20\pm 2^{\circ}C$ $<$ Criteria>Shall be within the specified capacitance tolerance.
4.2	Leakage current	<condition>After DC Voltage is applied to capacitors through the series protective resistor$(1k \Omega \pm 10 \Omega)$ so that terminal voltage may reach the reacted use voltage.The leakage current when measured in 2 minutes shall not exceed the valuesof the following equation.<criteria>I $\leq 0.04 \text{ CV} + 100 (\mu \text{A})$I: Leakage current ($\mu$A)C: Capacitance ($\mu$F)V: Rated DC Working Voltage (V)</criteria></condition>
4.3	tan δ	<condition> See 4.1, Norm Capacitance, for measuring frequency, voltage and temperature.<criteria> The tangent of the loss angle (tan δ) of the capacitors shall refer to the following table. Measurements shall be made under the same conditions as those given for the measurement of the capacitance.WV160200250400450WV1602000.250.250.30</criteria></condition>
4.4	Rated voltage (WV) Surge voltage (SV)	WV(V.DC)160200250400450SV (V.DC)200250300450500

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD					
Revision	В		Page	6			
STANDARD MANUAL							

Aillen Electronic Technology Limited

		<	Condition	>					
			STEP	Testing Tempera	ture(℃)			Time	
			1	20 ± 2		Time to reach thermal equilibrium			uilibrium
			2	-40(-25) ±	3	Time t	o reacl	n thermal equ	uilibrium
			3	20 ± 2		Time t	o reach	n thermal equ	uilibrium
			4	105±2		Time t	o reach	n thermal equ	uilibrium
			5	20 ± 2		Time t	o reacl	n thermal equ	uilibrium
4.5	Temperature characteristic IEC-60384-4 4.12	a. b c.	measured The leakag the specif At step 5 The leakag At-40 °C following Rated V Z-25°C/Z Z-40°C/Z	, capacitance shal capacitance, tan δ ge current value at ied value. , tan δ shall be wit ge current value sh (-25 °C), impedant table.	shall be +105 °C hin the li all not m ace (Z) r $\overline{60}$ 200 $\overline{6}$ 6 8 8	within lines within lines within lines shall not mit of 4. ore than atio shall atio shall 250 10 12	mit of 4 3. the spee 1 not e 400 10 12	4.3. than 8 times ecified value. xceed the value. 450 12 15	5
4.6	Sealing Tape Reel Strength								
I.	1 1.4., 2022 1/		N-	Survey Contraction	<u>Q1</u> , (ODUD			
SSU	ed-date: 2022-10)-09	Name	Specification	Sheet –	CDUD			
1554	Revision B Page 7								

STANDARD MANUAL

Aillen Electronic
Technology
Limited

		continuously for 6000+ hours recovering time following table: <criteria></criteria>	at a temperature of $105^{\circ}C \pm 2$ with ra 48/0 hours, Then the product should at atmospheric conditions. The result I meet the following requirements.	be tested	after 16
	Load life	Capacitance Change	\pm 30% of initial measured value.		
4.7	test	tan δ	300% or less of the value in 4.3		
	IEC-60384- 4 4.13	Leakage current	Not more than the specified va	lue.	
		Appearance	No leakage of electrolyte or swellin case. All markings shall be legible	ng of the	
		Inner construction	No corrosion of tab terminals or ele	ectrodes	
			asurement of the leakage current, the capacitor and its protective resista be discharged.		•
The capacitors are then stored with no voltage applied at a temperature $\pm 2^{\circ}$ C for 1000+48/0 hours. Following this period the capacitors shall be removed from the test chan be allowed to stabilized at room temperature for 4~8 hours. Next they shall be connected to a series limiting resistor(1k±100 Ω) v rated voltage applied for 30min. After which the capacitors shall be dis and then, tested the characteristics.ShelfCriteria> The characteristic shall meet the following requirements.					nber and vith D.C.
			meet the following requirements.		
	life	Change in capacitance	meet the following requirements. $\pm 30\%$ of initial measured value.		
4.8	test	Change in capacitance tan δ	$ \pm 30\% \text{ of initial measured value.} $ 300% or less of the value in 4.3		
4.8			$ \pm 30\% \text{ of initial measured value.} $ 300% or less of the value in 4.3 Not more than 300% of the specified		
4.8	test IEC-60384-	tan δ	$ \pm 30\% \text{ of initial measured value.} $ 300% or less of the value in 4.3 Not more than 300% of the specif No leakage of electrolyte or swell		case.
4.8	test IEC-60384-	$\tan \delta$ Leakage current	$ \pm 30\% \text{ of initial measured value.} $ 300% or less of the value in 4.3 Not more than 300% of the specified	ing of the	case.
4.8	test IEC-60384-	$tan \delta$ Leakage current Appearance Inner construction Remark: If the capacito	$\pm 30\% \text{ of initial measured value.} \\300\% \text{ or less of the value in 4.3} \\Not more than 300\% \text{ of the specif} \\No leakage of electrolyte or swell \\All markings shall be legible$	ing of the of the of the of the of the of the office offic	ent may
	test IEC-60384-	tan δ Leakage current Appearance Inner construction Remark: If the capacito increase. Ple necessary.	$\pm 30\% \text{ of initial measured value.}$ $300\% \text{ or less of the value in 4.3}$ Not more than 300% of the specif No leakage of electrolyte or swell All markings shall be legible No corrosion of tab terminals or e prs are stored more than 1 year, the leaf	ing of the of the of the of the of the of the office offic	ent may

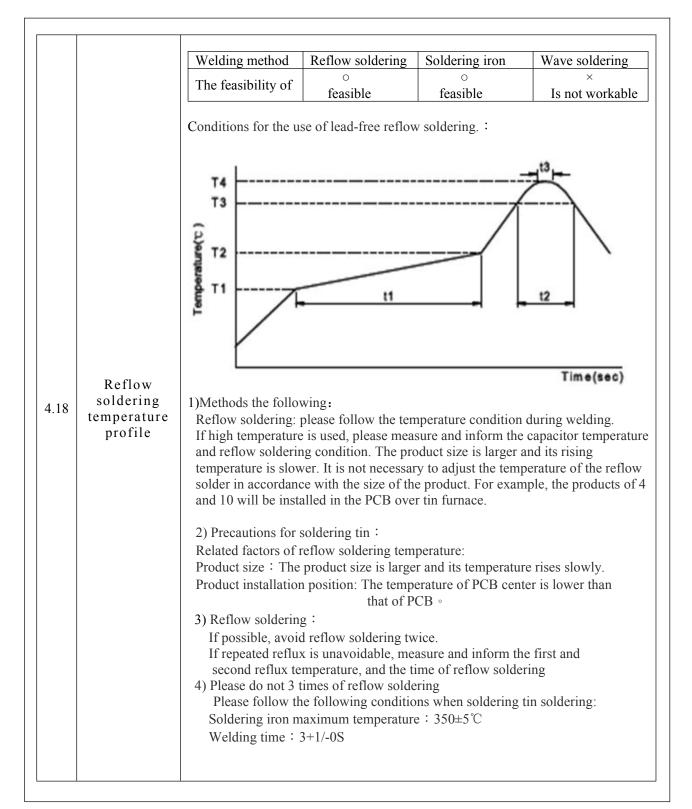
STANDARD MANUAL

		<condition></condition> Test temperature:15~35℃
		Series resistor: $R = \frac{100\pm50}{C}$
4.9	Surge test IEC-60384- 4 4.9	$ \begin{array}{l} C \\ \text{R}: \text{ protective resistor } (k\Omega) \\ \text{C}: \text{ nominal capacitance } (\mu\text{F}) \\ \text{Test voltage: Surge voltage item 4.4} \\ \text{No. of cycles: 1000cycles Each cycles lasts for 6\pm0.5min} \\ \text{"ON" for 30\pm5 s "OFF" for 5\pm0.5min.} \\ \hline \\ $
4.10	Vibration test IEC-60384- 4 4.8	<condition>Fix it at the point 4 mm or less from body. For ones of 12.5 mm or more in diameter or 25 mm or Capacitance;Direction and during of vibration:3 orthogonal directions mutually each for 2 hours(total of 6 hours)Vibration frequency range : $10Hz \sim 55Hz$ Peak to peak amplitude : $1.5mm$ Sweep rate : $10Hz \sim 55Hz \sim 10Hz$ in about 1 minute<</condition>

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD				
Revision	В		Page	9		
STANDARD MANUAL						

Aillen Electronic Technology	SMD aluminum electrolytic capacitor	Aillon
Limited	CDUD Series	Allen

		<conditio< th=""><th></th><th>der the following conditions:</th></conditio<>		der the following conditions:
		-		der the following conditions:
			temperature	: 245±3°C
		Dipping de	•	: 2mm
	0 11 1 11	Dipping sp		: 25±2.5mm/s
	Solderability	Dipping ti	ne	: 3±0.5s
4.11	Test			
	IEC-60384-4	<criteria< td=""><td>></td><td></td></criteria<>	>	
	4.6	Coating	auality	A minimum of 95% of the surface being
		county	4	immersed
		<conditio< th=""><th></th><th>18 maga 12 14)</th></conditio<>		18 maga 12 14)
			ow soldering (item 4	10
		The capac	citor shall be left at ro	bom temperature for before measurement.
		<criteria></criteria>		
	Resistance to		Not a	
4.12	solder heat	Leakage		nore than the specified value.
	test			in $\pm 10\%$ of initial value.
	1051	tan δ	Not n	nore than the specified value.
		Appeara	nce There	e shall be no leakage of electrolyte.
		<condition< th=""><th>></th><th></th></condition<>	>	
		Humidity 7		
		-		.12 methods, capacitor shall
		-		n an atmosphere of 90~95%R H .at
		60±3℃, t	he characteristic char	nge shall meet the following requirement.
	D	<criteria></criteria>		
	Damp	Leakage	current Not m	ore than the specified value.
4.13	heat	Capacitar	ce Change Withir	$\pm 20\%$ of initial value.
	test IEC60384-4	tan δ	Not m	ore than 120% of the specified value.
	4.12	Appearan		shall be no leakage of electrolyte.
	7.12	- pp varan		
Issue	d-date: 2022-10)-09 Name	Specification S	heet – CDUD
155000	a auto. 2022-10		specifications	


Issued-date. 2022-10-09	INallie	specification sheet – CDOD				
Revision	В		Page	10		
STANDARD MANUAL						

4.14 Charge of temperature cycle: According as below: Image: Charge of temperature is the condition according as below: Image: Charge of temperature is the condition according as below: Image: Charge of temperature is the condition according as below:	Aillen Electroni Technology Limited	-	SMD alum electrolytic c CDUD Se	apacitor	Aillen
4.15 Low Temperature Test Capacitors are placed at -40 ± 3 °C for 96 ± 4 hours. And then the capacitor shall be subjected to standard atmospheric conditions for 4 hours, after which measurements shall be made. 4.15 Low Temperature Test Low Test Leakage current Not more than the specified value. Capacitance Change Within ± 10% of initial value tan δ Not more than the specified value. Appearance No broken and undamaged	4.14 test IEC-60384-4	Temperat Accordin oven, the (1)+25 (2)-40 (3)+25 (4)+10 (5)+25 (1) to (2) and then for 4 hou <criteria? The chara Capacit tan δ Leakag</criteria? 	ure cycle: ng to IEC60384-4 e condition accord Temperature C C C 5°C C 5)=1 cycle, total 5 the capacitor shall urs, after which m heteristic shall mean tance Change e current	ing as below: Solution of the second state of the subjected to second state of the subject of t	Time Time Minutes ±2 Minutes ±2 Minutes ±2 Minutes ±3 Minutes ±4 Minutes ±5 Minutes ±5 Minutes ±4 Minutes ±5 Minutes ±5 Minutes ±5 Minutes ±6 Minutes ±7 Minutes ±8 Minutes ±9 Minutes ±9 Minutes ±1 Minutes ±2 Minutes 5 Minutes ±2 Minutes 5 Minutes
	4.15Low Temperature TestCapacitors and capacitor shat for 4 hours, a4.15Low Temperature Test		after which me urrent N ce Change N	d to standard attended to standard attended to standard attended to share the standard stand	mospheric conditions all be made. e specified value. initial value pecified value.
Revision B Page 11	Issued-date: 2022-10-0	9 Name	Specification	n Sheet – CDUI)
STANDARD MANUAL	Revision				Page 11

Aillen Electronic Technology	SMD aluminum electrolytic capacitor	Aillen
Limited	CDUD Series	

4.16	Vent Test IEC-60384-4 4.16	diameter i D.C. test The capa source. T <table 2<br="">Diame 22.4 <criteria No emiss the speci</criteria </table>	by by bowing test only apply to those products with vent products at $\geq \emptyset 8$ with vent. t ter action is connected with its polarity reversed to a DC power Then a current selected from Table 2 is applied.2> eter (mm)DC Current (A) 1
4.17	Mechanical Characte ristics Test	s until bent w the test board differs, it shall Substrate before test Specimen (of SMD) - Substrate during test Criteria> Without mech shall be satis	t: re in the direction of the arrow at a rate of about 0.5 mm / vidth reaches 2 mm and hold for 60s. The board shall be d "B" as specified in JIS C 0051: 2002. If the land area Ill be specified clearly in the next item.
Issued-	-date: 2022-10-0	9 Name	Specification Sheet – CDUD
	Revision	В	Page 12
		STA	ANDARD MANUAL

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD						
Revision	В		Page	13				
STANDARD MANUAL								

		Products cate			n electro	1.5	tic capacitor			
		voltage (V)		4~50	4~50		≥63	4~10	0	≥160
		Product size		Φ4~6. 3×4.5 L	Φ4~6	.3	Φ4~ 6.3	Φ8~1	8	≥Φ 12.5
			TEM $(T_1 \sim T_2, ^{\circ}C)$		1	150)~180	1		
		Preheating	Time (t ₁) Max, S	120		1	80			
		The	TEM (T_3, C)	230	217	230	217	217	230	217
		duration of the	Time (t ₂) Max, S	30	90	60	60	60	40	60
		The highest	TEM (T_4 , °C)	250	26	0	250	2	50	240
		temperature	Time (t ₃) Max, S	5						
		Return the nu	umber	1	≤ 2					
4.18	soldering temperature		ring will reduce th							
4.18		should be con recommende Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP pro reduced by a the capaciton	nfirmed whether red d reflow soldering e actual reflow con- se note that the hig e aluminum shell n oducts during the p $200 \degree C \circ$ condition tempera- duct will be damage bout 50%, the leak is damaged.	flow sold o dition cha hest temp nust not ex rocess of ture or du ged. The e rage curre	ering c unge is cerature acceed t reflow ration electros nt is la	still ba and the max heating is great	on meet used on ne elect cimum g tempo ter thar apacity	ts the s the re trode to tempe erature n the all of the	flow sc erminal rature. should bove ta	cation o oldering l at the l increas ble, the ct is
4.18	temperature	should be con recommende Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP pro reduced by a the capaciton Recomme	nfirmed whether red d reflow soldering e actual reflow com se note that the hig e aluminum shell n oducts during the p $200 \degree C \degree$ condition tempera duct will be damage bout 50%, the leak is damaged.	flow sold o dition cha hest temp nust not ex rocess of ture or du ged. The e rage curre	ering c unge is cerature acceed t reflow ration electros nt is la	still ba and the max heating is great	on meet used on ne elect cimum g tempo ter thar apacity	ts the s the re trode to tempe erature n the all of the	flow sc erminal rature. should bove ta	cation o oldering l at the l increas ble, the ct is
4.18	temperature	should be con recommende Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP pro reduced by a the capaciton Recomme	nfirmed whether red d reflow soldering e actual reflow con- se note that the hig e aluminum shell n oducts during the p 200 $^{\circ}C ^{\circ}$ condition tempera duct will be damag bout 50%, the leak is damaged. nded Land Size (1)	flow sold o dition cha hest temp nust not ex rocess of ture or du ged. The e age curre Unit: mm	ering c unge is cerature acceed t reflow ration electros nt is la	still ba and the max heating is great	on meet ased on the elect cimum g tempo ter than apacity to m A	ts the s the re rode to tempe erature n the al of the A), and	flow sc erminal rature. should bove ta	cation o oldering l at the l increas ble, the ct is
4.18	temperature	should be con- recommended Although the method, plead bottom of the OP - CAP protomore than If the reflow OP-CAP proconduced by a the capaciton \bigcirc Recommendation Recommendation Recommendation \bigcirc Size \square	nfirmed whether redd reflow solderinge actual reflow consentse note that the hige aluminum shell noducts during the p200 °C \circ condition temperatedoduct will be damagedbout 50%, the leakis damaged.nded Land Size (1)XX1.62.6	flow sold o dition cha hest temp nust not ex rocess of ture or du ged. The e age curre Unit: mm G 1.0	ering c unge is cerature acceed t reflow ration electros nt is la	still ba and the max heating is great	on meet ased on the elect cimum g tempo ter than apacity to m A	ts the s the re rode to tempe erature n the al of the A), and	specific flow sc erminal rature. should bove ta product the ou	cation o oldering l at the l increas ble, the ct is
4.18	temperature	should be con recommende Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP pro reduced by a the capaciton Recomme \underline{Size} $\underline{\Phi 4}$ $\underline{\Phi 5}$	nfirmed whether red d reflow soldering e actual reflow con- se note that the hig e aluminum shell n oducts during the p $200 \degree C \degree$ condition temperate duct will be damage bout 50%, the leak r is damaged. nded Land Size ($\frac{X}{1.6}$ 1.6 3.0	flow sold o dition cha hest temp nust not ex rocess of ture or du ged. The e rage curre Unit: mm G 1.0 1.4	ering c unge is cerature acceed t reflow ration electros nt is la	still ba and the max heating is great	on meet ased on the elect cimum g tempo ter than apacity to m A	ts the s the re rode to tempe erature n the al of the A), and	specific flow sc erminal rature. should bove ta product the ou	cation o oldering l at the l increas ble, the ct is
4.18	temperature	should be con recommende Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP pro reduced by a the capaciton Recomme \underline{Size} $\underline{\Phi 4}$ $\underline{\Phi 5}$ $\underline{\Phi 6.3}$	nfirmed whether redd reflow solderinge actual reflow comsentationse note that the higee aluminum shell noducts during the p $200 \ ^{\circ}C \ ^{\circ}$ condition temperationoduct will be damagebout 50%, the leaseis damaged.nded Land Size (1)XY1.62.61.63.01.63.5	flow sold o dition cha hest temp nust not exprocess of ture or du ged. The e age curre Unit: mm G 1.0 1.4 1.9	ering c unge is cerature acceed t reflow ration electros nt is la	still ba and the max heating is great	on meet ased on the elect cimum g tempo ter than apacity to m A	ts the s the re rode to tempe erature n the al of the A), and	specific flow sc erminal rature. should bove ta product the ou	cation o oldering l at the l increas ble, the ct is
4.18	temperature	should be con- recommended Although the method, plead bottom of the OP - CAP protomore than If the reflow OP-CAP proconducted by a the capaciton Recommendation Recommendation Size $\Phi 4$ $\Phi 5$ $\Phi 6.3$ $\Phi 8$	firmed whether redd reflow solderinge actual reflow consentse note that the hige aluminum shell noducts during the p200 °C \circ condition temperaduct will be damagedbout 50%, the leakis damaged.nded Land Size (1)X1.62.61.63.01.63.52.53.5	flow sold o dition cha hest temp nust not ex rocess of ture or du ged. The e age curre Unit: mm G 1.0 1.4 1.9 3.0	ering c unge is cerature acceed t reflow ration electros nt is la	still ba and the max heating is great	on meet ased on the elect cimum g tempo ter than apacity to m A	ts the s the re rode to tempe erature n the al of the A), and	specific flow sc erminal rature. should bove ta product the ou	cation o oldering l at the l increas ble, the ct is
4.18	temperature	should be con- recommended Although the method, plead bottom of the OP - CAP protomore than If the reflow OP-CAP proceed by a the capacitor \bigcirc Recommendation Recommendation \bigcirc Recom	firmed whether redd reflow solderinge actual reflow comsenutese note that the hige aluminum shell noducts during the p200 °C \circ condition temperateduct will be damagebout 50%, the leakis damaged.nded Land Size (1)XY1.61.63.52.52.52.54.0	flow sold o dition cha hest temp nust not exprocess of ture or du ged. The e age curre Unit: mm G 1.0 1.4 1.9 3.0 4.0	ering c unge is cerature acceed t reflow ration electros nt is la	still ba and the max heating is great	on meet ased on the elect cimum g tempo ter than apacity to m A	ts the s the re rode to tempe erature n the al of the A), and	specific flow sc erminal rature. should bove ta product the ou	eation o oldering l at the l increase ble, the ct is itside of
4.18	temperature	should be con- recommended Although the method, plead bottom of the OP - CAP protomore than If the reflow OP-CAP proconducted by a the capaciton Recommendation Recommendation Size $\Phi 4$ $\Phi 5$ $\Phi 6.3$ $\Phi 8$	firmed whether redd reflow solderinge actual reflow consentse note that the hige aluminum shell noducts during the p200 °C \circ condition temperaduct will be damagedbout 50%, the leakis damaged.nded Land Size (1)X1.62.61.63.01.63.52.53.5	flow sold o dition cha hest temp nust not ex rocess of ture or du ged. The e age curre Unit: mm G 1.0 1.4 1.9 3.0	ering c unge is cerature acceed t reflow ration electros nt is la	still ba and the max heating is great	on meet ased on the elect cimum g tempo ter than apacity to m A	ts the s the re rode to tempe erature n the al of the A), and	specific flow sc erminal rature. should bove ta product the ou	eation o oldering l at the l increase ble, the ct is itside of

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD		
Revision	В		Page	14
	STA	ANDARD MANUAL		

5. Product Dimensions & Maximum Permissible Ripple Current

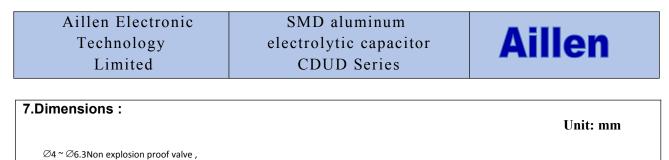
Size : ϕ D X L (mm) , Maximum Allowable Ripple Current (mAr.m.s/+105°C,120 Hz)

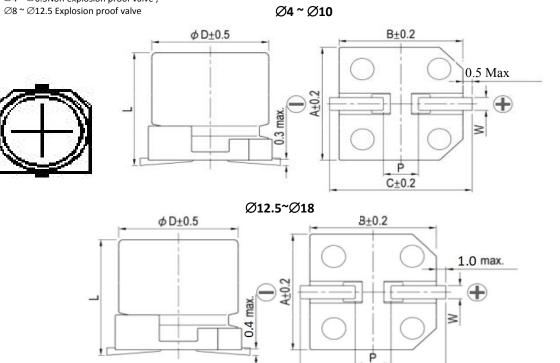
	WV	V 160 (2C) 200(2D)		250(2E)			
μF	Item	D×L	Ripple Current	D×L	Ripple Current	D×L	Ripple Current
	1						
1	.5						
2	2.2						
3	3.3					8x10.2	21
4	1.7			8x10.2	25	8x10.2	26
5	5.6			8x10.2	27	8x10.2	28
6	6.8	8x10.2	30	8x10.2	30	10x10.2	34
8	3.2	8x10.2	35	8x10.2	33	10x10.2	37
	10	10x10.2	50	10x10.2	40	10x10.2	45
	12	10x10.2	53	10x10.2	45	10x10.2	50
	15	10x10.2	55	10x13.5	60	10x13.5	70
2	22	10x13.5	65				

	WV	400	(2G)	450	(2W)
μF	Item	D×L	Ripple Current	D×L	Ripple Current
	1			8x10.2	15
	1.5	8x10.2	12	8x10.2	18
2	2.2	8x10.2	15	8x10.2	20
:	3.3	8x10.2	20	10x10.2	25
2	4.7	10x10.2	35	10x12.5 10x13.5	35 40
	5.6	10x13.5	45	10x13.5	50
(6.8	10x13.5	50	10x13.5 12.5x13.5	55 60

Remark:

1)Specification are subject to change without notice should a safety or technical concern arise regarding the product please be sure to contact our sales offices;

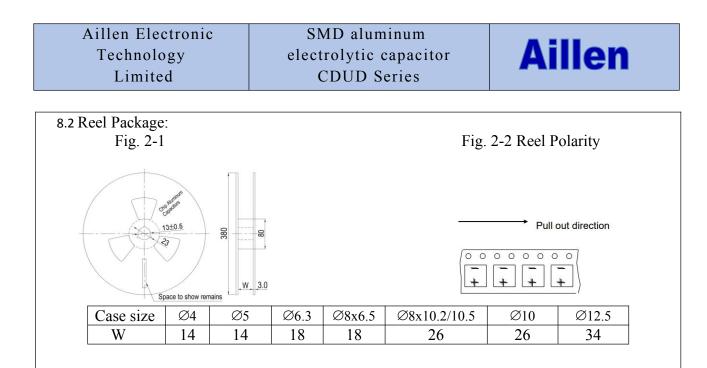

2)The sizes in the above table are all general specifications. If you need other specifications, please contact us.


Issued-date: 2022-10-09	Name	Specification Sheet – CDUD						
Revision	В		Page	15				
STANDARD MANUAL								

Frequency Coefficient of Allowable Ripple Current: Frequency 120Hz 1kHz 10kHz 100kHz Coefficient 1.25 1.40 1.60 1.00 Temperature coefficient Ambient Temperature ($^{\circ}$ C) 105 85 ≤70 Coefficient 1.0 1.5 2.0 6. Marking : Capacitors shall be legibly marked with the following: Capacitance 100 Negative polarity-25 Rated Voltage Manufacture's mark

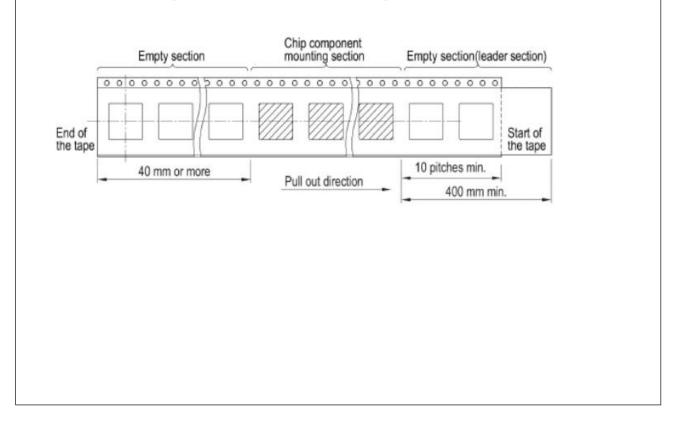
Issued-date: 2022-10-0	9 Name	Specification Sheet – CDUD						
Revision	В		Page	16				
	STANDARD MANUAL							

Dimensions (Unit: mm)


Size	Φ4×5.4	Φ5×5.4	Ф6.3×5.4	Ф6.3×7.7	Ф8×6.5	Ф8×10.2	Φ10×10.2	Ф12.5×13.5
А	4.3	5.3	6.6	6.6	8.3	8.3	10.3	13.0
В	4.3	5.3	6.6	6.6	8.3	8.3	10.3	13.0
С	5.1	5.9	7.2	7.2	9.0	9.0	11.0	13.7
W	0.5~0.8	0.5~0.8	0.5~0.8	0.5~0.8	0.5~0.8	0.7~1.1	0.7~1.3	1.1~1.4
Р	1.0±0.3	1.5±0.3	2.1±0.3	2.1±0.3	3.1±0.3	3.1±0.3	4.5±0.3	4.4±0.3
L	5.4 -0.3/+0.5	5.4 -0.3/+0.5	5.4 -0.3/+0.5	7.7 -0.3/+0.5	6.5 -0.3/+0.5	10.2±0.5	10.2±0.5	13.5±0.5

C±0.2

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD					
Revision	В		Page	17			
STANDARD MANUAL							


Aillen

8. Taping Specifications: Applicable standard JIS C0806 and IEC 60286. 8.1 Carrier Tape and Dimension Fig.1 (\emptyset 4 ~ \emptyset 18) Fig. 1-1 Fig. 1-2 W1 t1] t1 t2 A À W Ρ F A_0 B_0 T_2 Size Ød P1 P2 t1 W1 Applicable (mm) (mm) (mm) (mm) (mm) (mm) Ф4*5.4 12 8 5.5 4.7 4.7 5.8 1.5 2.0 4.0 0.4 1.75 Fig.1-1 Ф5*5.4 0.4 12 5.5 6.0 6.0 5.8 1.5 2.0 4.0 1.75 12 Φ6.3*5.4 12 7.5 7.0 7.0 5.8 1.5 2.0 4.0 0.4 16 1.75 Φ6.3*7.7 16 12 7.5 7.0 7.0 8.3 1.5 2.0 4.0 0.4 1.75 7.5 7.0 7.0 Φ6.3*10.2 16 12 11.0 1.5 2.0 4.0 0.4 1.75 Φ8*6.5 12 7.5 8.7 8.7 6.8 1.5 2.0 4.0 0.4 1.75 16 Fig.1-2 Φ8*10.2 24 16 11.5 8.7 8.7 11.0 1.5 2.0 4.0 0.4 1.75 Φ8*12.5 24 16 11.5 8.7 8.7 13.0 1.5 2.0 4.0 0.4 1.75 24 10.7 1.5 4.0 0.4 Φ10*10.2 16 11.5 10.7 11.0 2.0 1.75 Φ10*12.5 24 11.5 10.7 2.0 16 10.7 13.0 1.5 4.0 0.4 1.75 Φ10*13.5 24 16 11.5 10.7 10.7 13.0 1.5 2.0 4.0 0.4 1.75 Fig1-3(\emptyset 12.5 ~ \emptyset 18) 00000000 0000 0 0 • • • 进料孔 W Р F Α В t2 Φd W_1 Applicable Size \mathbf{P}_1 P_2 t_1 (mm) (mm) (mm) (mm) (mm) (mm) Φ12.5*13.5 24 14.2 13.4 13.4 14.5 1.5 4.0 1.75 32 2.0 0.5 Φ12.5*16 14.2 13.4 17 1.5 2.0 4.0 0.5 1.75 32 24 13.4 Fig.1-3 Φ16*16.5 17.5 1.75 44 28 20.2 17.5 17.5 1.5 2.0 4.0 0.5 Φ16*21.5 44 28 20.2 17.5 17.5 22.5 1.5 2.0 4.0 0.5 1.75 Φ18*16.5 44 32 20.2 19.5 19.5 17.5 1.5 2.0 4.0 0.5 1.75 Issued-date: 2022-10-09 Name Specification Sheet - CDUD Revision В Page 18 STANDARD MANUAL

9. Packing Method

- 9.1 Polarity: Anode on the opposite side of the feed hole
- 9.2 The leader length of the tape shall not be less than 400mm including 10 or more embossed sections in which no parts are contained.
- 9.3 The winding core is provided with an over 40mm long empty section.

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD		
Revision	В		Page	19
	STA	ANDARD MANUAL		

10. Application guideline for V-CHIP aluminum electrolytic capacitors

10.1 Circuit Design:

- 1) Please make sure the environmental and mounting conditions to which the capacitor will be exposed are within the conditions specified in catalogue.
- 2) Operating temperature and applied ripple shall be within specification.
- 3) Appropriate capacitors which comply with the life requirement of the products should be selected when designing the circuit.
- 4) Aluminum electrolytic capacitors are polar. Make sure that no reverse voltage or AC voltage is applied to the capacitors. Please use bi-polar capacitors for a circuit that can possibly see reversed polarity.

Note: Even bi-polar capacitors cannot be used for AC voltage application.

- 5) Do not use aluminum electrolytic capacitors in a circuit that requires rapid and very frequent charge / discharge. In this type of circuit, it is necessary to use a special design capacitor with extended life characteristics.
- 6) Do not apply excess voltage.

-Please pay attention to that the peak voltage, which is DC voltage overlapped by ripple current, will not exceed the rated voltage.

- In the case where more than 2 aluminum electrolytic capacitors are used in series, please make sure that applied voltage will be lower than rated voltage and the voltage will be applied to each capacitor equally by using a balancing resistor in parallel with the capacitor

- 7) Aluminum electrolytic capacitors shall not be used under the following environmental conditions:
 - Capacitors will be exposed to water (including condensation), brine or oil.
 - Ambient conditions that include toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonium, etc.
 - Ambient conditions that expose the capacitor to ozone, ultraviolet ray and radiation.
 - Severe vibration and physical shock conditions that exceed specification.
 - Vibration test condition:

vibration frequency range : $10 \sim 55 \sim 10$ Hz

sweep rate : $10 \sim 55 \sim 10$ Hz/minute

sweep method : logarithmic

amplitude or acceleration : 1.5mm (max. acceleration is 10G)

direction of vibration : X, Y, Z direction

testing time: 2 hours per each direction

Shock is not applicable normally.

If a particular condition is required, please contact our sales office.

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD							
Revision	В		Page	20					
	STANDARD MANUAL								

- 8) The main chemical solution of the electrolyte and the separator paper used in the capacitors are combustible. The electrolyte is conductive. When it comes in contact with the PC board, there is a possibility of pattern corrosion or short circuit between the circuit pattern, which could result in smoking or catching fire. Do not locate any circuit pattern beneath the capacitor end seal.
- 9) Do not design a circuit board that the heat generating components are placed near the aluminum electrolytic capacitor or on the reverse side of PC board, if that just under the capacitor.
- 10) Electrical characteristics may vary depending on changes in temperature and frequency. Please consider this variation when you design circuits.
- 11) When you install more than 2 capacitors in parallel, please consider the balance of current flowing into the capacitors.
- 12) While mounting capacitors on double-side PC board, the capacitors should be away from those unnecessary base plate holes and connection holes.

10.2 Mounting

- 1)Once a capacitor has been assembled in the set and power applied, do not attempt to re-use the capacitor in other circuits or application.
- 2)Leakage current of the capacitors that have been stored for more than 2 years may increase.
 - When leakage current has increased, please perform a voltage treatment using a $1k\Omega$ resistor.
- 3)Please confirm specifications and polarity before installing capacitors on the PC board.
- 4)Do not drop capacitors on the floor, nor use a capacitor that was dropped.
- 5)Do not deform the capacitor during installation.
- 6)Please pay attention to the mechanical shock to the capacitor by suction nozzle of the automatic insertion machine or automatic mounter, or by product checker, or by centering mechanism.

10.3 Reflow soldering

- 1) Please follow "Reflow Soldering Conditions" in catalogue.
- 2) When an infrared heater is used, please pay attention to the extent of heating since the absorption rate of infrared will vary due to difference in the color and size of the capacitor.
- 3) Do not tilt lay down or twist the capacitor body after the capacitor are soldered to the PC board.
- 4) Do not carry the PC board by grasping the soldered capacitor.
- 5) Please do not allow anything to touch the capacitor after soldering. If PC boards are stored in stack, please make sure the PC board or other components away from the capacitor.
- 6) The capacitors shall not be effected by any radiated heat from the soldered PC board or other components after soldering.

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD					
Revision	В		Page	21			
STANDARD MANUAL							

7) Cleaning

(1) Do not clean capacitors with halogenated cleaning agent. However, if it is necessary to clean with halogenated cleaning agent, please contact our sales office.

(2) Recommended cleaning method:

Applicable : Any type, any ratings

Cleaning conditions : Total cleaning time shall be within 2 minutes by immersion, ultrasonic or other methods. Temperature of the cleaning agents shall be 40°C or below. After cleaning, capacitors should be dried by using hot air for the minimum 10 minutes along with the PC board mounted. Hot air temperature should be within the maximum operating temperature of the capacitor. Insufficient dryness after water rinse may cause appearance problems, such as bottom-plate bulge and etc.

(3)Avoid using ozone destructive substances as cleaning agents for protecting global environment.

10.4 In the Equipment

- 1) Do not directly touch terminal by hand.
- 2) Do not link positive terminal and negative terminal by conductor, nor spill conductible liquid such as alkaline or acidic solution on or near the capacitor.

3)Please make sure that the ambient conditions where the set is installed are free from spilling water or oil, direct sunlight, ultraviolet rays, radiation, poisonous gases, vibration or mechanical shock.

10.5 Maintenance and Inspection

Please periodically inspect the aluminum capacitors that are installed in industrial equipment. The following items should be checked:

Appearance: remarkable abnormality such as pressure relief vent opening, electrolyte leaking, etc.

Electrical characteristics: capacitance, dielectric loss tangent, leakage current and etc., which are specified in catalogue or alternate product specification.

10.6 In an Emergency

- 1) If you see smoke due to operation of safety vent, please turn off the main switch or pull out the plug from the outlet.
- 2) If you breathe the gas or ingest the electrolyte, please wash out your mouth and throat with water immediately.
- 3) If your skin is exposed to the electrolyte, please wash it away using soap and water.

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD					
Revision	В		Page	22			
STANDARD MANUAL							

10.7 Storage

1) Do not keep capacitor in high temperature and high humidity atmosphere. Storage conditions should be:

Temperature: $5^{\circ}C \sim 35^{\circ}C$ Humidity : lower than 75% Place : Indoor

- 2) Avoid ambient conditions where capacitors are covered with water, brine or oil.
- 3) Avoid ambient conditions where capacitors are exposed to ozone, ultraviolet ray or radiation.

10.8 Disposal

Please take either of the following methods in disposing capacitors.

- 1) Incinerate them after crushing capacitors or making a hole on the capacitor body.
- 2) If incineration is not applicable, hand them over to a waste disposal agent and have them buried in landfills.

Issued-date: 2022-10-09	Name	Specification Sheet – CDUD					
Revision	В		Page	23			
STANDARD MANUAL							