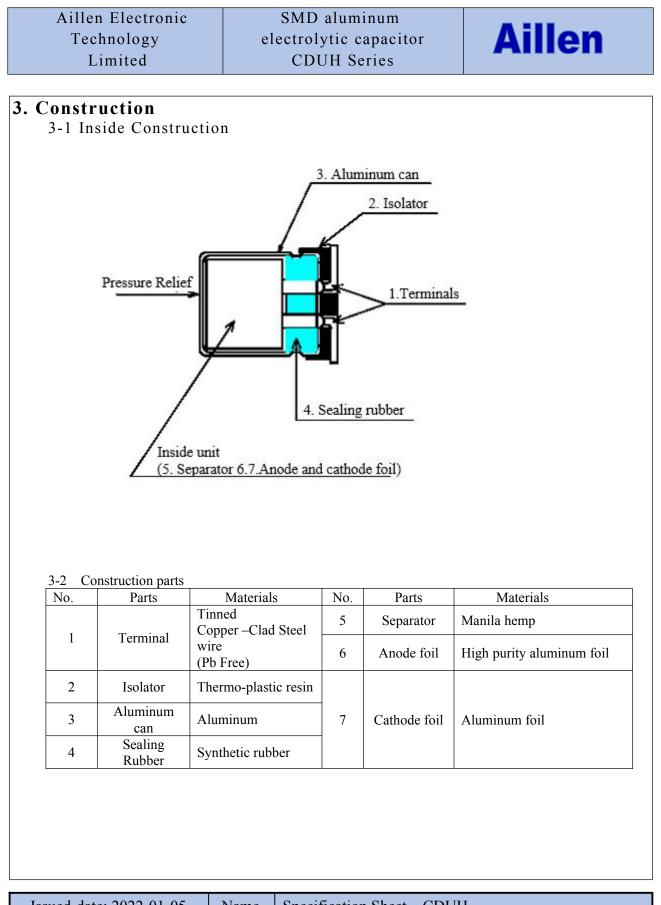
Aillen Electronic Technology Limited

Date	Version	Mark	Page	Description	Drafter	Approve
日期	版本	标记	页码	描述	制定者	审批者

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH		
Revision	В		Page	1
	STA	ANDARD MANUAL		


	Aillen Electronic Technology Limited		SMD alu ctrolytic CDUH	capac		A	lille	en
1.	Application This specification applies to equipment. Designed capacitor's quality n	-		lectrolytic	e capacitor	(foil ty	rpe) used	in electronic
2.	Part Number Syste <u>CAE</u> 107 <u>M</u> 1 <u>A</u> <u>H</u> <u>Vo</u> <u>Capacitance</u> (2.2)	UH F Seri Environm Itage (2.3) (2.4)	J2 T Case Diameter (es (2.6) rental requir	Length (2.7)	ging (2.9) 2.8)			
2.1	Code C/A Product Type V-C	AE HIP						
2.2		05 106 .0 10	107 100					
2.3	Rated voltage codeCode1AVoltage (W.V.)10	1C 16	1E 25	1V 35	1H 50	1J 63	2A 100	
	Code2CVoltage (W.V.)160	2D 200	2E 250	2G 400	2W 450			
2.4	Code N Tolerance Range ±20		V 0%~+20%					
2.5		<u>s</u> R OHS irements		H equiremer ogen Free				
2.6	Products Series Code:CodeUHSeriesCDUH							
Iss	sued-date: 2022-01-05	Name	Specificat	tion Shee	et – CDUI	H		

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH		
Revision	В		Page	2
	STA	ANDARD MANUAL		

Aillen Electronic Technology Limited	SMD aluminum electrolytic capacitor CDUH Series	Aillen
--	---	--------

	Code	С	D	E	F	G	Ι			
	Diameter	4	5	6.3	8	10	12.5			
Cas	<u>e length</u>									
	Cod	le	E4	F5	G7	J2	J5	1A	1B	1C
	Cas Length		5.4	6.5	7.7	10.2	10.5	11.5	12.5	13.5
Pacl	<u>kaging:</u>									
	Code		Т	R						
				of Reel						

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH		
Revision	В		Page	3
	STA	ANDARD MANUAL		

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH		
Revision	В		Page	4
	STA	ANDARD MANUAL		

	Aillen Electronic		SMD aluminum		
	Technology	el	ectrolytic capacitor	Aillen	
	Limited		CDUH Series		
4.	Technology electrolytic capacitor Ailen				
	Technology Limitedelectrolytic capacitor CDUH SeriesAiiienAiiienCharacteristicsStandard atmospheric conditionsUnless otherwise specified, the standard range of atmospheric conditions for making measurements at tests is as follows: Ambient temperature $:15^{\circ}$ C to 35° C Relative humidity $:45\%$ to 85% Air Pressure $:86kPa$ to $106kPa$ If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature $:20^{\circ}$ C $\pm 2^{\circ}$ C Relative humidity $:60\%$ to 70% Air Pressure $:86kPa$ to $106kPa$ Operating temperature range The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -40°C to 125° C.				
			l range of atmospheric conditions	for making measurements and	
	i il i lessure	. 0081	u to 100ki u		
	If there is any doubt about the	e results, r	neasurement shall be made within	the following conditions:	
	Ambient temperature	: 20°C	$C \pm 2^{\circ}C$	C .	
	Air Pressure	: 8081	'a to 100kPa		
	Operating temperature range				
		e at which	the capacitor can be operated cor	ntinuously at rated voltage	
	is -40°C to 125°C.				
	As to the detailed information	, please re	fer to table 1		
Is	ssued-date: 2022-01-05	Name	Specification Sheet – CDUH	I	

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH		
Revision	В		Page	5
	STA	ANDARD MANUAL		

Aillen Electronic	SMD aluminum
Technology	electrolytic capacitor
Limited	CDUH Series

Table													
	Item						PERF	ORM	ANC	E			
4.1	Nominal capacitance (Tolerance)	Mea Mea Mea	ndition asuring asuring asuring riteria> Il be wit	Frequ √oltaş Temp	ge beratur	: N re : 20		e than	0.5V	ce.			
4.2	Leakage current	Afta (1k The of t <ci 10- φ φ 160 I≪ I: I C: 0 V:</ci 	$\Omega \pm 10.9$ leakage he follo riteria> -100VD D \leq 10x D>10x 0.450VI 0.04CV Leakage Capacita Rated D	oltage 2) so curre wing C 10.2: 10.2: DC +100 curres ince (<u>C Wo</u>	that to ent wheequation $I \leq 0$ $I \leq 0$ (μA) (μA) (μF)	ermina nen me ion. .01CV .03CV	l volta; asured or 3 (μ or 4 (μ	ge may in 2 m A) wh	y reach ninutes icheve	h the r s shall er is g	reacted not exc	rotective rouse voltag	e.
4.3	tan δ	<co See <cr The tab Mea</cr </co 	4.1, No iteria> e tangen le.	> rm Ca t of th nts sh nt of t	apacit ne loss nall be	ance, f s angle made	or mea (tan δ) under	of the	e capa	citors	shall reads the 100 0.12	and tempo fer to the f ose given f 160~250 0.24 0.20	ollowing
4.4	Rated voltage (WV) Surge voltage (SV)	SV (V	V.DC)	10 11. 160 200	5 I) 1	16 18.4 200 250	25 28.8 250 300	35 40. 300 350	2 5 0 3	50 57.5 350 400	63 72.5 400 450	100 115 450 500	

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH		
Revision	В		Page	6
	STA	ANDARD MANUAL		

Aillen Electronic Technology Limited

		<	Conditio	1>										
			STEP	Testing T	empe	eratu	re(°C)			Ti	me		
			1		20 ± 2		(/	ime	to rea	ch the	ermal equ	ilibrium	
			2	-40	(-25)	± 3			Time to reach thermal equilibrium					
			3	+	20±2				Time to reach thermal equilibrium					
			4		125±2							ermal equ		
			5		$20\pm$							thermal equilibrium		
4.5	Temperature characteristic IEC-60384-4 4.12	a. b. c. <u>Rated</u> Z-25 ° C (120Hz Z-40°C/2 (120Hz	measured The leaka the speci At step The leaka At-40 °C following Voltage (/Z+20 °C z) Z+20 °C z)	C, capacitan d capacitanc age current v fied value. 5, tan δ shal age current v (-25 °C), in g table.	e, tan value l be v alue mpec	$1 \delta sh at +$ within shall lance 16 2 3 4 6	nall b 105° C n the not 25° C 2° C 2° C 4° C	be with C shall shall be writh C shall be writh C shall be a state of	hin lill nc t of 4 than 50 shall 50 2 2 3 3 3	$\begin{array}{c} imit of monoder monod$	ere that pecific exceed 100 2 2 3 3	n 8 times ed value. ed the va 160~250 6 - 6 -		
			-		ių ili	ipeae		Siluli		cusui	eu ut	20112.		
		$<$ Condition> Peel angle: 165 to 180 °C refer to the surface on which the tape is glued. Peel speed: 300mm per minutes The peel strength must be $0.1 \sim 0.7$ N under these conditions. Peel speed: 300mm/min Cover tape Direction of unreeling $165 - 180^\circ$ Carrier tape												
4.6	Sealing Tape Reel Strength	Peel spo The peo	eed: 300n el strength	nm per minu n must be 0. Peel speed:	ites 1 ~ 0 300n	.7Nι m/mii	under n	r thes	e cor Cove	ndition		s glued.		
	Reel Strength	Peel spo The pee	eed: 300n el strength	nm per minu n must be 0. Peel speed:	1 ~ 0 300n	.7N u nm/min 3°	n	carrie	cove	ndition er tape		s glued.		
		Peel spo The pee	eed: 300n el strength	nm per minu n must be 0. Peel speed:	1 ~ 0 300n	.7N u nm/min 3°	n	carrie	cove	ndition er tape		s glued.		

STANDARD MANUAL

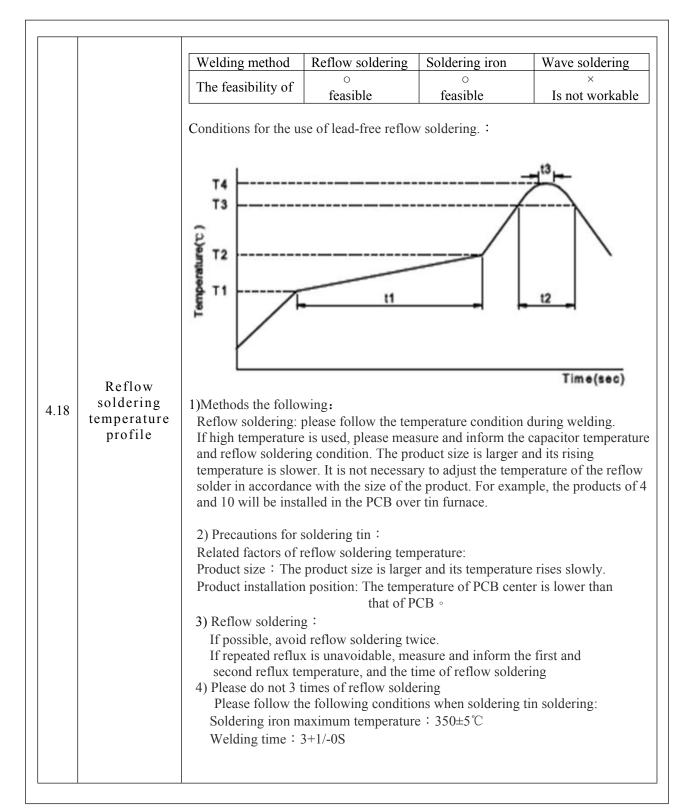
		The cont +48/ after	inuously fo ⁄0hours;≥1	or φ D≤8 2.5x13.5 ecovering	a temperature of $125^{\circ}C \pm 2$ with rat x6.5:1000 +48/0hours;8x10.5~10x1 :3000 +48/0hoursThen the product s g time at atmospheric conditions. The	3.5:2000 should be 1	tested
	Load	<crit< b=""> The</crit<>		tic shall r	neet the following requirements.		
4.7	life test	Capacitance Change			\pm 30% of initial measured value.		
4.7	IEC-60384- 4 4.13	tan δ			300% or less of the value in 4.3		
	4 4.13	Leak	age currei	nt	Not more than the specified va	lue.	
		Appe	earance		No leakage of electrolyte or swellin case. All markings shall be legible	ng of the	
		Inner	constructio	n	No corrosion of tab terminals or ele	ectrodes	
		volta (1 k	age shall be	applied	surement of the leakage current, the across the capacitor and its protective er which it shall be discharged.		
	Shelf	The ±2° Foll be a Nex rated	capacitors a C for 1000- owing this j llowed to st t they shall	+48/0 hou period the tabilized be conne oplied for	e capacitors shall be removed from the at room temperature for $4 \sim 8$ hours. Sected to a series limiting resistor(1k \pm 30min. After which the capacitors s	ie test chai ±100Ω) v	mber and vith D.C.
	life	<cı< td=""><td>riteria></td><td></td><td></td><td></td><td></td></cı<>	riteria>				
4.8	test				neet the following requirements.		
	IEC-60384- 4 4.17		ange in capa	acitance	$\pm 30\% \text{ of initial measured value.}$ 300% or less of the value in 4.3		
		tan Lea	o kage currer	nt	Not more than 300% of the specifi	ied value	
			pearance		No leakage of electrolyte or swelli All markings shall be legible	ing of the	case.
		Inn	er construct	tion	No corrosion of tab terminals or el	lectrodes	
		Ren		ase. Pleas	s are stored more than 1 year, the lease apply voltage through about $1 \text{K} \Omega$	-	-
				,y.			
Issue	d-date: 2022-0)1-05	Name	Specif	ication Sheet – CDUH		
	Revision		В	1		Page	8
						0-	

		<condition> Test temperature:15~35°C</condition>	
		Series resistor: R= $\frac{100\pm5}{C}$	<u>0</u>
	Surge	R : protective resistor (K C : nominal capacitance (Test voltage: Surge voltag No. of cycles: 1000cycles	Ω) (μF)
	test	<criteria></criteria>	
4.9	IEC-60384- 4 4.9	Leakage current	Not more than the specified value.
	4 4.9	Capacitance Change	Within $\pm 15\%$ of initial value.
		tan δ	Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.
		diameter or 25 mm or Ca Direction and during of v 2 hours(total of 6 hours)	ibration:3 orthogonal directions mutually each for
		Vibration frequency rang Peak to peak amplitude	
		Sweep rate	: 10 Hz ~ 55 Hz ~ 10 Hz in about 1 minute
4.10	Vibration test IEC-60384- 4 4.8	< Criteria > Leakage current Capacitance Change tan δ	Not more than the specified value. Within $\pm 10\%$ of initial value. Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH		
Revision	В		Page	9
	STA	ANDARD MANUAL		

Aillen Electronic Technology	SMD aluminum electrolytic capacitor	Aillen
Limited	CDUH Series	AIICI

	1							
			Condition					
		Tł	he capacito	or shall be te	ested under	the following condition	ns:	
		Sc	oldering te	mperature		: 245±3°C		
		Di	ipping dep	th		: 2mm		
	Solderability		ipping spe	ed		: 25±2.5mm/s		
			ipping tim	e		: 3±0.5s		
4.11	Test							
4.11	IEC-60384-4	<(Criteria>					
	4.6		Casting	1:4		A minimum of 95% o	f the surfa	ce being
			Coating qu	lanty		immersed		_
			<u>a</u> 114					
			Condition		<i>C</i> 110	10.14		
						page 13-14)		
		1	he capacit	or shall be	left at room	temperature for before	e measurei	ment.
		-0	riteria>					
	Resistance to		Leakage c	urrant	Notmor	e than the specified value	10	1
4.12	solder heat						le.	
	test		•	ce Change	-	=10% of initial value.		
			tan δ		Not more	e than the specified value	ue.	
			Appearan	ce	There sha	all be no leakage of ele	ctrolyte.	
			ondition> umidity Te	st:				
		Ac	cording to	IEC60384-	-4 No.4.12	methods, capacitor sha	11	
		be	exposed f	for 1000 ± 8	hours in an	n atmosphere of 90~959	%R H .at	
		60	$\pm 3^{\circ}$ C, the	e characteris	stic change	shall meet the followin	g requirer	nent.
	D	<u><</u> C	riteria>					_
	Damp	L	leakage cu	rrent	Not more	than the specified value	e.	
4.13	heat test	C	Capacitanc	e Change	Within \pm	20% of initial value.		
	IEC60384-4	ta	an δ		Not more	than 120% of the speci	fied value	
	4.12		Appearance			ll be no leakage of elec		
	7.12		-pp • ur un •		111010 0114			
Issue	d-date: 2022-01	-05	Name	Specifica	ation Shee	et – CDUH		
	Revision		B				Раде	10


155 ded dute : 2022 01 05	1 (unite	Specification Sheet CD 011		
Revision	В		Page	10
	STA	ANDARD MANUAL		

А	illen Electron	nic		SMD aluminum			
Technology			el	electrolytic capacitor			illen
Limited				CDUH S	series		
4.14	Change of temperature test IEC-60384-4 4.7		oven, the $(1)+25^{\circ}C$ $(2) -40^{\circ}C$ $(3)+25^{\circ}C$ $(4) +125^{\circ}C$ (1) to (5) and then the for 4 hours Criteria> The charace	re cycle: g to IEC60384- condition acco Temperatur 2 2 °C 2 =1 cycle, total he capacitor sh s, after which teristic shall m nce Change current	rding as below: e	Time 3 Minutes 3 Minutes 3 Minutes 3 Minutes 3 Minutes 3 Minutes standard atm Ibe made. requirement. of initial val the specified the specified	es s s s s s s s nospheric conditions ue. d value. d value.
4.15	Low Temperature Test	capaci hours, <crite Le Ca tan</crite 	itors are tor shall after wh ria> akage cu pacitance	be subjected ich measurer rrent e Change	0 ± 3 °C for 96 ± to standard atm nents shall be m Not more than th Within ± 10% of Not more than the No broken and u	ospheric co ade. ne specified f initial valu specified val	l value. ue ue.
Issued	d-date: 2022-01-	.05	Name	Specification	on Sheet – CDU	Н	
	Revision		В				Page 11

Aillen Electronic Technology	SMD aluminum electrolytic capacitor	Aillen
Limited	CDUH Series	

		diameter D.C. test The capa	lowing test only apply to those products with vent products a $r \ge \emptyset 8$ with vent.
4.16	Vent Test IEC-60384-4 4.16	<table 2<br="">Diame 22.4 <criteria No emiss the speci</criteria </table>	2>neter (mm)DC Current (A)4 or less1
4.17	Mechanical Characte ristics Test	s until bent w the test board differs, it shal Substrate before test Specimen (of SMD) - Substrate during test Criteria> Without mech shall be satis	st: ure in the direction of the arrow at a rate of about 0.5 mm width reaches 2 mm and hold for 60s. The board shall b rd "B" as specified in JIS C 0051: 2002. If the land are all be specified clearly in the next item.
Issued	-date: 2022-01-0	5 Name	Specification Sheet – CDUH
	Revision	В	Page 12
		ST/	ΓANDARD MANUAL

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH							
Revision	В		Page	13					
STANDARD MANUAL									

		Products categ	gory		SMD aluminum electrolytic capacitor					
		voltage (V)			4~4	50	≥63	4~1	00	≥160
		Product size			Ф4~	6.3	Φ4~6.3	Φ8~	-18	≥Ф12.5
			TEM $(T_1 \sim T_2, °C)$ 150~180							
		Preheating	Time (t_1) !				180			
		The	TEM (T_3 ,	℃)	217	230	217	217	230	217
		duration of the	Time (t_2) !	Max, S	90	60	60	60	40	60
		The highest	TEM (T_4 ,			260	250	2	250	240
		temperature	Time (t_3) !	Max, S			5			
		Return the nu * Please cont					\leq			
18	Reflow soldering temperature profile	please cont ●OP-CAP I Reflow solde should be correcommended Although the method, please bottom of the OP - CAP pro- to more than If the reflow OP-CAP pro-	v condition fact us. • Precautions: ring will rec firmed whe d reflow sol e actual reflo se note that aluminum oducts durin 200 °C • condition te duct will be bout 50%, t is damaged	is based duce the ether refl- dering. • ow condi- the higher shell mu ag the pro- emperatu damage he leakaş l.	d on IPC/JEDEC(J-STD-020), e rated electrostatic capacity of the product, and flow soldering condition meets the specificatio					ification v solderin inal at the re. ould incre e table, the oduct is
				-			· ·			
		尺寸Size	X 16	Y 26	G			-G	Y	-
		Φ4 Φ5	1.6	2.6 3.0	<u> </u>					×
		Φ6.3	1.6	3.5	1.9				IIIX	
		Φ8	2.5	3.5	3.0					77. pad
		Φ10	2.5	4.0	4.0		L			🛛 : pad
		Φ12.5	3.2	4.0	6.0					

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH						
Revision	В		Page	14				
STANDARD MANUAL								

5. Product Dimensions & Maximum Permissible Ripple Current

Size : ϕ D X L (mm) , Maximum Allowable Ripple Current (mAr.m.s/+125 °C,100kHz)

_	WV	10(1A)	16(1C)	25(1E)
μF	Item	D×L	Ripple Current	D×L	Ripple Current	D×L	Ripple Current
	10					6.3x5.4	69
	22					6.3x5.4	69
	33			6.3x5.4	69	6.3x7.7	110
	47	6.3x5.4	69	6.3x7.7	110	6.3x7.7	110
	47	0.3X3.4	69	8x6.5	110	8x10.2	220
				6.3x7.7	110	8x10.2	220
	100	8x10.2	220	8x6.5	110	40-40-0	000
				8x10.2	220	10x10.2	296
		8x10.2	220	8x10.2	220		
	220	10x10.2	296	10x10.2	296	10x10.2	296
		40.40.0	000	10x10.2	296		750
	330	10x10.2	296	12.5x13.5	750	12.5x13.5	750
	470	12.5x13.5	750	12.5x13.5	750		
	680	12.5x13.5	750				

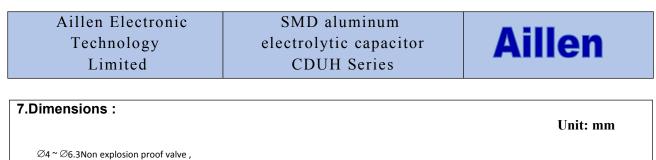
υE	WV	50(1H)	63(1J)	100(2A)	
μF	Item	D×L	R.C.	D×L	R.C.	D×L	R.C.
	10	6.3x5.4	51	6.3X7.7	60	01/40.0	70
	10	8x6.5	83	0.377.7	60	8X10.2	70
	22	6.3x7.7	83	8X10.2	100	8X10.2	70
	22	8x6.5	83	8710.2	100	10X10.2	115
		6.3x7.7	83		170	10X10.2	115
:	33	8x6.5	83	10X10.2			
		8x10.2	160				
	47	8x10.2	160	10X10.2	170	12.5X13.5	450
	47	10x10.2	247	10×10.2	170	12.5×13.5	450
	00	10x10.2	247	12.5x13.5	500		
	00	12.5x13.5	550	12.0813.5	500		
2	220	12.5x13.5	550				

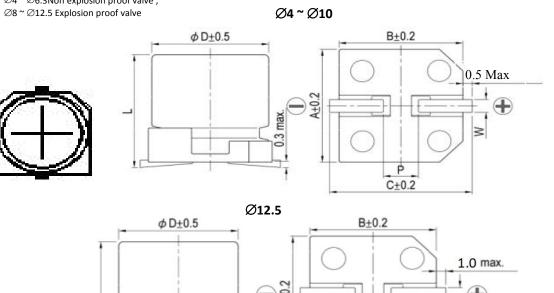
Issued-date: 2022-01-05	Name	Specification Sheet – CDUH						
Revision	В		Page	15				
STANDARD MANUAL								

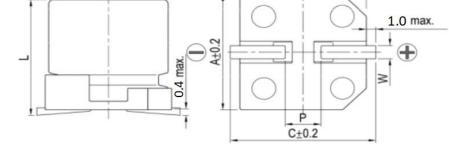
	WV	160(20	C)	200(2	D)	250(21	Ξ)	400(2	!G)	450(2W)	
μF	Item	D×L	R.C.	D×L	R.C.	D×L	R.C.	D×L	R.C.	D×L	R.C.
	1							10x10.5	22		
	2.2							10x12.5	37	12.5x13 .5	35
	3.3							12.5x13.5	50	12.5x16	45
	4.7							12.5x16	70	16x16.5	60
	5.6							10x10.2	45		
	6.8							16x16.5	100		
	10	10x12.5	87	12.5x16	110	12.5x16	110	16x21.5	130	16x21.5	110
	15			12.5x16	110	12.5x16	150	16x21.5	160	18x21.5	150
	22	12.5x16	180	16x16.5	200	16x21.5	210	18x21.5	240	18x21.5	230
	33	16x16.5	220	16x21.5	250	16x21.5	250				
	47	16x21.5	260	18x21.5	320	18x21.5	320				
	68	16x21.5	310								
	100	18x21.5	400								

Remark:

1)Specification are subject to change without notice should a safety or technical concern arise regarding the product please be sure to contact our sales offices;

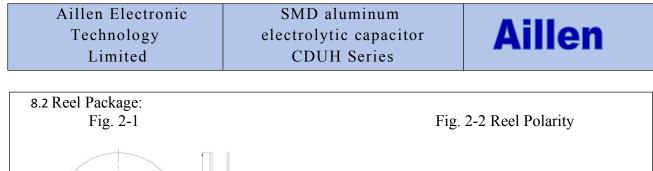

2)The sizes in the above table are all general specifications. If you need other specifications, please contact us.

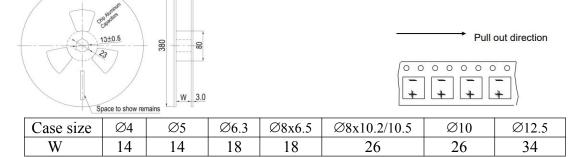

Frequency Coefficient of Allowable Ripple Current:	
--	--


Rated Voltage(V)	Dimensions	Frequency Cap	120Hz	1kHz	10kHz	100kHz
	≤10x10.2	10µF	0.66	0.86	0.93	1.00
	≪10x10.2	>10µF	0.93	0.97	1.00	1.00
	12.5x13.5	47~100µF	0.40	0.75	0.90	1.00
10~100		220~470µF	0.50	0.85	0.94	1.00
		680~1000µF	0.60	0.87	0.95	1.00
		2200~3300µF	0.75	0.90	0.95	1.00
		≥4700µF	0.85	0.95	0.98	1.00
160~450	>12 512 5	3.3~33	0.55	0.83	0.97	1.00
100-450	≥12.5x13.5	47~68	0.66	0.86	0.93	1.00

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH						
Revision	В		Page	16				
STANDARD MANUAL								

Aillen Electronic		SMD aluminum		
Technology	el	ectrolytic capacitor	Aille	n
Limited		CDUH Series		
5. Marking : Capacitors shall be legibly ma	arked with	the following:		
Negative po	olarity –	Capacitance Capacitance Rated Manufacture's mark	l Voltage	
		Manufacture's mark		
1	N T		×	
x 11	Name	Specification Sheet – CDUI	H	
Issued-date: 2022-01-05 Revision	В	1	Page	17


Dimensions (Unit: mm)


Size	Φ4×5.4	Φ5×5.4	Ф6.3×5.4	Ф6.3×7.7	Φ8×6.5	Φ8×10.5	Φ10×10.5	Φ12.5×13.5
Α	4.3	5.3	6.6	6.6	8.3	8.3	10.3	13.0
В	4.3	5.3	6.6	6.6	8.3	8.3	10.3	13.0
C	5.1	5.9	7.2	7.2	9.0	9.0	11.0	13.7
W	0.5~0.8	0.5~0.8	0.5~0.8	0.5~0.8	0.5~0.8	0.7~1.1	0.7~1.3	1.1~1.4
Р	1.0±0.3	1.5±0.3	2.1±0.3	2.1±0.3	3.1±0.3	3.1±0.3	4.5±0.3	4.4±0.3
L	5.4 -0.3/+0.5	5.4 -0.3/+0.5	5.4 -0.3/+0.5	7.7 -0.3/+0.5	6.5 -0.3/+0.5	10.2±0.5	10.2±0.5	13.5±0.5

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH						
Revision	В		Page	18				
STANDARD MANUAL								

Aillen

8. Taping Specifications: Applicable standard JIS C0806 and IEC 60286. 8.1 Carrier Tape and Dimension Fig.1 (\emptyset 4 ~ \emptyset 18) Fig. 1-1 Fig. 1-2 V1 t1] t1 12 A A W Ρ F A_0 B_0 T₂ Size Ød Ρ1 P2 t1 W1 Applicable (mm) (mm) (mm) (mm) (mm) (mm) Φ4*5.4 12 8 5.5 4.7 4.7 5.8 1.5 2.0 4.0 0.4 1.75 Fig.1-1 Φ5*5.4 0.4 12 5.5 6.0 6.0 5.8 1.5 2.0 4.0 1.75 12 Φ6.3*5.4 12 7.5 7.0 7.0 5.8 1.5 2.0 4.0 0.4 1.75 16 Φ6.3*7.7 16 12 7.5 7.0 7.0 8.3 1.5 2.0 4.0 0.4 1.75 7.5 7.0 Φ6.3*10.2 16 12 7.0 11.0 1.5 2.0 4.0 0.4 1.75 Φ8*6.5 12 7.5 8.7 8.7 1.5 2.0 4.0 0.4 16 6.8 1.75 Fig.1-2 Φ8*10.2 24 16 11.5 8.7 8.7 11.0 1.5 2.0 4.0 0.4 1.75 2.0 Φ8*12.5 24 16 11.5 8.7 8.7 13.0 1.5 4.0 0.4 1.75 Φ10*10.2 10.7 10.7 4.0 24 16 11.5 11.0 1.5 2.0 0.4 1.75 Ф10*12.5 24 11.5 10.7 10.7 2.0 16 13.0 1.5 4.0 0.4 1.75 Φ10*13.5 24 16 11.5 10.7 10.7 13.0 1.5 2.0 4.0 0.4 1.75 Fig1-3(\emptyset 12.5 ~ \emptyset 18) 00000000 0000 0 0 • • • 进料孔 W Р F Α В t2 Applic W_1 Size Φd \mathbf{P}_1 P_2 t_1 (mm) (mm) (mm) (mm) (mm) (mm) able Φ12.5*13.5 24 14.2 13.4 13.4 14.5 1.5 4.0 0.5 32 2.0 1.75 Φ12.5*16 24 14.2 13.4 17 1.5 2.0 4.0 0.5 1.75 32 13.4 Fig.1-3 Φ16*16.5 17.5 1.75 44 28 20.2 17.5 17.5 1.5 2.0 4.0 0.5 Φ16*21.5 44 28 20.2 17.5 17.5 22.5 1.5 2.0 4.0 0.5 1.75 Φ18*16.5 44 32 20.2 19.5 19.5 17.5 1.5 2.0 4.0 0.5 1.75 Issued-date: 2022-01-05 Name Specification Sheet - CDUH 19 Revision В Page STANDARD MANUAL

9. Packing Method

- 9.1 Polarity: Anode on the opposite side of the feed hole
- 9.2 The leader length of the tape shall not be less than 400mm including 10 or more embossed sections in which no parts are contained.
- 9.3 The winding core is provided with an over 40mm long empty section.

	Empty section		Chip compone mounting secti	nt on	Empty	section(lead	er sectio	n)	
End of the tape	0000000			2000	000		Start o	f	
	40 mm or more	_	Pull out direction	on	- 10 pit	ches min. 400 mm mi			
Issued-da	te: 2022-01-05	Name	Specificat	ion She	et - C	DUH			
R	evision	В						Page	20
	STANDARD MANUAL								

10. Application guideline for V-CHIP aluminum electrolytic capacitors

10.1 Circuit Design:

- 1) Please make sure the environmental and mounting conditions to which the capacitor will be exposed are within the conditions specified in catalogue.
- 2) Operating temperature and applied ripple shall be within specification.
- 3) Appropriate capacitors which comply with the life requirement of the products should be selected when designing the circuit.
- 4) Aluminum electrolytic capacitors are polar. Make sure that no reverse voltage or AC voltage is applied to the capacitors. Please use bi-polar capacitors for a circuit that can possibly see reversed polarity.

Note: Even bi-polar capacitors cannot be used for AC voltage application.

- 5) Do not use aluminum electrolytic capacitors in a circuit that requires rapid and very frequent charge / discharge. In this type of circuit, it is necessary to use a special design capacitor with extended life characteristics.
- 6) Do not apply excess voltage.

-Please pay attention to that the peak voltage, which is DC voltage overlapped by ripple current, will not exceed the rated voltage.

- In the case where more than 2 aluminum electrolytic capacitors are used in series, please make sure that applied voltage will be lower than rated voltage and the voltage will be applied to each capacitor equally by using a balancing resistor in parallel with the capacitor

- 7) Aluminum electrolytic capacitors shall not be used under the following environmental conditions:
 - Capacitors will be exposed to water (including condensation), brine or oil.
 - Ambient conditions that include toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonium, etc.
 - Ambient conditions that expose the capacitor to ozone, ultraviolet ray and radiation.
 - Severe vibration and physical shock conditions that exceed specification.
 - Vibration test condition:

vibration frequency range $: 10 \sim 55 \sim 10$ Hz

sweep rate : $10 \sim 55 \sim 10$ Hz/minute

sweep method : logarithmic

amplitude or acceleration : 1.5mm (max. acceleration is 10G)

direction of vibration : X, Y, Z direction

testing time: 2 hours per each direction

Shock is not applicable normally.

If a particular condition is required, please contact our sales office.

Issued-date: 2022-01-05	I-date: 2022-01-05 Name Specification Sheet – CDUH					
Revision	В		Page	21		
STANDARD MANUAL						

- 8) The main chemical solution of the electrolyte and the separator paper used in the capacitors are combustible. The electrolyte is conductive. When it comes in contact with the PC board, there is a possibility of pattern corrosion or short circuit between the circuit pattern, which could result in smoking or catching fire. Do not locate any circuit pattern beneath the capacitor end seal.
- 9) Do not design a circuit board that the heat generating components are placed near the aluminum electrolytic capacitor or on the reverse side of PC board, if that just under the capacitor.
- 10) Electrical characteristics may vary depending on changes in temperature and frequency. Please consider this variation when you design circuits.
- 11) When you install more than 2 capacitors in parallel, please consider the balance of current flowing into the capacitors.
- 12) While mounting capacitors on double-side PC board, the capacitors should be away from those unnecessary base plate holes and connection holes.

10.2 Mounting

- 1)Once a capacitor has been assembled in the set and power applied, do not attempt to re-use the capacitor in other circuits or application.
- 2)Leakage current of the capacitors that have been stored for more than 2 years may increase.
 - When leakage current has increased, please perform a voltage treatment using a $1k\Omega$ resistor.
- 3)Please confirm specifications and polarity before installing capacitors on the PC board.
- 4)Do not drop capacitors on the floor, nor use a capacitor that was dropped.
- 5)Do not deform the capacitor during installation.
- 6)Please pay attention to the mechanical shock to the capacitor by suction nozzle of the automatic insertion machine or automatic mounter, or by product checker, or by centering mechanism.

10.3 Reflow soldering

- 1) Please follow "Reflow Soldering Conditions" in catalogue.
- 2) When an infrared heater is used, please pay attention to the extent of heating since the absorption rate of infrared will vary due to difference in the color and size of the capacitor.
- 3) Do not tilt lay down or twist the capacitor body after the capacitor are soldered to the PC board.
- 4) Do not carry the PC board by grasping the soldered capacitor.
- 5) Please do not allow anything to touch the capacitor after soldering. If PC boards are stored in stack, please make sure the PC board or other components away from the capacitor.
- 6) The capacitors shall not be effected by any radiated heat from the soldered PC board or other components after soldering.

Issued-date: 2022-01-05	Name	Specification Sheet – CDUH				
Revision	В		Page	22		
STANDARD MANUAL						

7) Cleaning

(1) Do not clean capacitors with halogenated cleaning agent. However, if it is necessary to clean with halogenated cleaning agent, please contact our sales office.

(2) Recommended cleaning method:

Applicable : Any type, any ratings

Cleaning conditions : Total cleaning time shall be within 2 minutes by immersion, ultrasonic or other methods. Temperature of the cleaning agents shall be 40°C or below. After cleaning, capacitors should be dried by using hot air for the minimum 10 minutes along with the PC board mounted. Hot air temperature should be within the maximum operating temperature of the capacitor. Insufficient dryness after water rinse may cause appearance problems, such as bottom-plate bulge and etc.

(3)Avoid using ozone destructive substances as cleaning agents for protecting global environment.

10.4 In the Equipment

- 1) Do not directly touch terminal by hand.
- 2) Do not link positive terminal and negative terminal by conductor, nor spill conductible liquid such as alkaline or acidic solution on or near the capacitor.

3)Please make sure that the ambient conditions where the set is installed are free from spilling water or oil, direct sunlight, ultraviolet rays, radiation, poisonous gases, vibration or mechanical shock.

10.5 Maintenance and Inspection

Please periodically inspect the aluminum capacitors that are installed in industrial equipment. The following items should be checked:

Appearance: remarkable abnormality such as pressure relief vent opening, electrolyte leaking, etc.

Electrical characteristics: capacitance, dielectric loss tangent, leakage current and etc., which are specified in catalogue or alternate product specification.

10.6 In an Emergency

- 1) If you see smoke due to operation of safety vent, please turn off the main switch or pull out the plug from the outlet.
- 2) If you breathe the gas or ingest the electrolyte, please wash out your mouth and throat with water immediately.
- 3) If your skin is exposed to the electrolyte, please wash it away using soap and water.

Issued-date: 2022-01-05	ssued-date: 2022-01-05 Name Specification Sheet – CDUH				
Revision	В		Page	23	
STANDARD MANUAL					

10.7 Storage

1) Do not keep capacitor in high temperature and high humidity atmosphere. Storage conditions should be:

Temperature: $5^{\circ}C \sim 35^{\circ}C$ Humidity : lower than 75% Place : Indoor

- 2) Avoid ambient conditions where capacitors are covered with water, brine or oil.
- 3) Avoid ambient conditions where capacitors are exposed to ozone, ultraviolet ray or radiation.

10.8 Disposal

Please take either of the following methods in disposing capacitors.

- 1) Incinerate them after crushing capacitors or making a hole on the capacitor body.
- 2) If incineration is not applicable, hand them over to a waste disposal agent and have them buried in landfills.

Issued-date: 2022-01-05	5 Name Specification Sheet – CDUH					
Revision	В		Page	24		
STANDARD MANUAL						