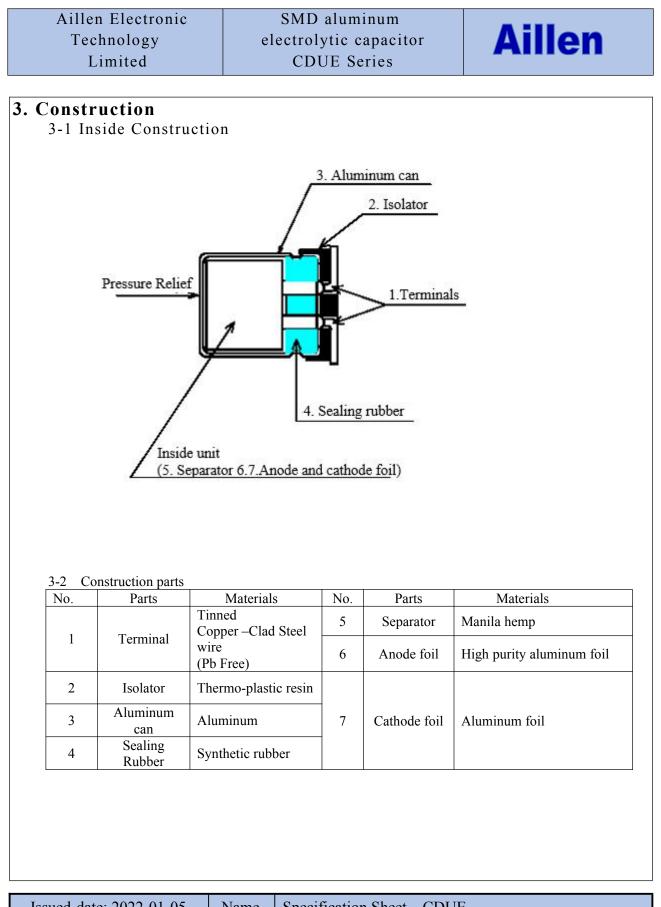
Aillen Electronic Technology Limited

Date	Version	Mark	Page	Description	Drafter	Approve
日期	版本	标记	页码	描述	制定者	审批者

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE		
Revision	В		Page	1
	STA	ANDARD MANUAL		

	Aillen Electronic		SMD alu	minum							
	Technology				or	Λ	illa	6			
	Limited										
	Limited		CDUE	Series							
1.	Application This specification applies equipment. Designed capacitor's quality			ectrolytic	capacitor	(foil type	e) used in	n electronic			
2.		<u>H</u> <u>UE</u> Se Environ Voltage (2.3) nce (2.4)	└─ Diameter eries (2.6) mental requ	e Length ((2.7)	ging (2.9) (2.8)						
2.1		CAE CHIP									
2.2	Capacitance code										
	Code	475 470	6 477	478							
	Capacitance (µF)	4.7 47	470	4700							
2.3	Rated voltage code		·	•	-						
	Code 0J	1A	1C	1E	1V	1H	1J	2A			
	Voltage (W.V.) 6.3	10	16	25	35	50	63	100			
2.4	Capacitance tolerance			•							
	Code	М	V								
	Tolerance Range =	=20% -1	0%~+20%]							
				1							
2.5	Environmental requiremental										
	Code Environmental	ROHS		H equirements	2						
		quirements		ogen Free							
	<u> </u>			-	_						
2.6	CodeUESeriesCDUE										
Ice	sued-date: 2022-01-05	Name	Specificat	ion Shoot							
15			specificat	ion sheet	-0001	_	Darr	2			
	Revision	В					Page	2			

Aillen Electronic Technology Limited	SMD aluminum electrolytic capacitor CDUE Series	Aillen
--	---	--------


2.7 <u>Dia</u>	<u>meter</u>										
	Code	С	D	E	F	G	Ι				
	Diameter	4	5	6.3	8	10	12.5				
2.8 <u>Ca</u>	se length										
	Cod	le	E4	E7	F5	G7	J2	J5	1A	1B	1C
	Cas Length		5.4	5.7	6.5	7.7	10.2	10.5	11.5	12.5	13.5

2.9 Packaging:

 <u></u>	
Code	TR
Packaging	Taping of Reel

2.10 Suffix: Inner Code

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE		
Revision	В		Page	3
	STA	ANDARD MANUAL		

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE		
Revision	В		Page	4
	STA	ANDARD MANUAL		

Aillen Electronic		SMD aluminum	
Technology	el	ectrolytic capacitor	Aillen
Limited		CDUE Series	
	-		
4. Characteristics			
Standard atmospheric condition	ons		
		d range of atmospheric conditions	for making measurements and
Ambient temperature	:15°C	to 35°C	
Relative humidity		to 85%	
Air Pressure	: 86kl	Pa to 106kPa	
If there is any doubt about the Ambient temperature		neasurement shall be made within $C \pm 2^{\circ}C$	the following conditions:
Relative humidity		$\pm 2 C$ to 70%	
Air Pressure		Pa to 106kPa	
<u>Operating temperature range</u> The ambient temperature rang	e at whicł	the capacitor can be operated con	tinuously at rated voltage
is -55°C to 105°C.	e ut willer		
As to the detailed information	please re	fer to table 1	
	, p		
Issued-date: 2022-01-05	Name	Specification Sheet – CDUE	

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE		
Revision	В		Page	5
	STA	ANDARD MANUAL		

Aillen Electronic Technology	SMD aluminum electrolytic capacitor	Aillen
Limited	CDUE Series	

ITEM	<conditi< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></conditi<>										
	<conditi< td=""><td></td><td></td><td></td><td>PER</td><td>FORM</td><td>IAN</td><td>CE</td><td></td><td></td><td></td></conditi<>				PER	FORM	IAN	CE			
Nominal capacitance (Tolerance)	Measurir Measurir Measurir <criteri< b=""></criteri<>	ng Freq ng Volta ng Tem a >	age pera	:1 ture :2	Not m 20 ± 2	°C	an 0.:				
Leakage current	After DC $(1k \Omega \pm 1)$ The leakaof the fo <criteri< b="">I ≤ 0.01I: LeakaC: Capa</criteri<>	2 Voltag 10Ω) so age curring 10 wing $a^{>}$ C Vor 3 ge currents citance	o tha rent g equ (μA ent (μ (μF)	t termin when m nation. () which (() ()	al vol easure never i	tage m ed in 2 s grea	ay re mint	each th	e reacte	ed use v	oltage.
tan δ	See 4.1, Criteria The tang table. Measure	Norm C a> gent of t ments s	he lo hall the	be made capacita	e (tan e unde ince.	δ) of t er the s 25	he ca ame	pacitor conditi	rs shall	refer to	the following
(WV)				10 11.5				35 40.3	_		
	capacitance (Tolerance)	Nominal capacitance (Tolerance)Measurin Measurin Measurin Shall be Shall be Shall be Shall be Shall be Criteri The leaka of the fo Criteri I ≤ 0.01 Leakage current <conditi< b=""> After DC (1k $\Omega \pm 1$ The leaka of the fo <criteri< b=""> I ≤ 0.01Leakage current<conditi< b=""> After DC (1k $\Omega \pm 1$ The leaka of the fo <criteri< b=""> The leaka Of the fo <criteri< b=""> The leaka Of the fo <criteri< b=""> The leaka Display Condition See 4.1, 5tan δ<conditi< b=""> See 4.1, 5tan δ<criteria< b=""> The tang table. Measure measured Measure<b< td=""><td>Nominal capacitance (Tolerance)Measuring Volta Measuring Tem (Tem Shall be within the Shall be within the Shall be within the After DC Voltage ($1k \Omega \pm 10 \Omega$) so The leakage currentLeakage current<condition> After DC Voltage ($1k \Omega \pm 10 \Omega$) so The leakage currentLeakage currentI: Leakage current I <0.01CVor 3</br></br></br></condition></td>I: Leakage current I: Leakage currentI: Leakage current C: Capacitance V: Rated DC Wtan δ<condition> See 4.1, Norm C Measurements so measurement of $\overline{Measurements so}$ measurement of \overline{MV} 6.3 $\overline{tan \delta}$ 0.26Rated voltage (WV) Surge voltage$\overline{WV(V.DC)}$ 6. $\overline{SV}(V.DC)$ 7.</br></br></br></br></br></br></br></br></br></br></condition></br></br></br></b<></criteria<></conditi<></criteri<></criteri<></criteri<></conditi<></criteri<></conditi<>	Nominal capacitance (Tolerance)Measuring Volta Measuring Tem (Tem Shall be within the Shall be within the Shall be within the After DC Voltage ($1k \Omega \pm 10 \Omega$) so The leakage currentLeakage current <condition> After DC Voltage ($1k \Omega \pm 10 \Omega$) so The leakage currentLeakage currentI: Leakage current I <0.01CVor 3</br></br></br></condition>	Nominal capacitance (Tolerance)Measuring Voltage Measuring Tempera (Measuring Tempera) $< Criteria>$ Shall be within the side Shall be within the side (Ik $\Omega \pm 10 \Omega$) so that The leakage current of the following equivale (Criteria> I ≤ 0.01 CVor 3 (μ A I: Leakage current (C: Capacitance (μ F)) V: Rated DC WorkitLeakage current $< Condition>$ See 4.1, Norm Capa See 4.1, Norm Capatan δ $< Criteria>$ The tangent of the loc table. Measurements shall measurement of the $\delta = 0.26 - 0$ Rated voltage (WV) Surge voltage $< WV(V.DC) - 6.3$ SV (V.DC) 7.2	Nominal capacitance (Tolerance)Measuring Voltage::Measuring Temperature::Shall be within the specified <criteria> Shall be within the specifiedAfter DC Voltage is applied (1k $\Omega \pm 10 \Omega$) so that termin The leakage current when m of the following equation. <criteria> I <= 0.01CVor 3 (μA) which I: Leakage current (μA) C: Capacitance (μF) V: Rated DC Working VoltLeakage current<condition> See 4.1, Norm Capacitance, See 4.1, Norm Capacitance, Measurements shall be made measurement of the capacita table. Measurements shall be made measurement of the capacita table.Measurement shall be made measurement of the capacita$\overline{WV}$$6.3$$\overline{WV}$$6.3$$\overline{WV}$$0.26$$\overline{VVV}$Surge voltage</condition></criteria></criteria>	Nominal capacitance (Tolerance)Measuring Voltage : Not m Measuring Temperature : 20 ± 2 (Tolerance) <criteria> Shall be within the specified capace Shall be within the specified capaceLeakage current<condition> After DC Voltage is applied to cap ($1k \Omega \pm 10 \Omega$) so that terminal vol The leakage current when measure of the following equation. <criteria> I <0.01CVor 3 (μA) whichever it I: Leakage current (μA) C: Capacitance (μF) V: Rated DC Working Voltage (N See 4.1, Norm Capacitance, for m See 4.1, Norm Capacitance, for m tan δtan δ<condition> See 4.1, Norm Capacitance, for m deasurement of the capacitance. $\overline{WV}$$\overline{WV}$$6.3$$10$$\overline{WV}$$6.3$$10$$\overline{WV}$$6.3$$10$$\overline{WV}$$\overline{0.26}$$0.20$$\overline{WV}$$\overline{0.26}$$0.20$$\overline{WV}$$\overline{0.2}$$11.5$$\overline{WV}$$\overline{0.2}$$11.5$</condition></criteria></condition></criteria>	Nominal capacitance (Tolerance)Measuring Voltage : Not more tha Measuring Temperature : $20 \pm 2^{\circ}C$ <criteria> Shall be within the specified capacitance<condition> After DC Voltage is applied to capacitor ($1k \Omega \pm 10 \Omega$) so that terminal voltage m The leakage current when measured in 2 of the following equation.Leakage currentLeakage currentLeakage currentLeakage currentLeakage currentLeakage currentLeakage currentLeakage currentLeakage currentI <= 0.01CVor 3 (µA) whichever is great I: Leakage current (µA) C: Capacitance (µF) V: Rated DC Working Voltage (V)Kated DC Working VoltageVCriteria> The tangent of the loss angle (tan δ) of t table. Measurements shall be made under the s measurement of the capacitance.\overline{WV} $\overline{6.3}$ $10$$\overline{WV}$ $\overline{0.20}$Rated voltage (WV)Surge voltage$\overline{WV(V.DC)}$$\overline{SV(V.DC)}$$7.2$$11.5$$18.4$$2$</condition></criteria>	Nominal capacitance (Tolerance)Measuring Voltage: Not more than 0 Measuring Temperature: $20 \pm 2^{\circ}C$ <criteria> Shall be within the specified capacitance tole:<criteria> Shall be within the specified capacitors through the capacitor of the following equation. Leakage current<condition> After DC Voltage is applied to capacitors through the following equation. Leakage current<criteria> I <0.01CVor 3 (µA) whichever is greater.</criteria></condition></criteria></criteria>	Nominal capacitance (Tolerance)Measuring Voltage measuring Temperature $: 20 \pm 2^{\circ}C$ Measuring Temperature $: 20 \pm 2^{\circ}C$ Shall be within the specified capacitance tolerance.After DC Voltage is applied to capacitors through th (1k $\Omega \pm 10 \Omega$) so that terminal voltage may reach the The leakage current when measured in 2 minutes shi of the following equation.Leakage currentI <<0.01CVor 3 (µA) whichever is greater.	Nominal capacitance (Tolerance)Measuring Voltage: Not more than 0.5V Measuring Temperature : $20\pm 2^{\circ}C$ <td>Nominal capacitance (Tolerance)Measuring Voltage measuring TemperatureNot more than $0.5V$ Measuring Temperature(Tolerance)<criteria> Shall be within the specified capacitance tolerance.<condition> After DC Voltage is applied to capacitors through the series protect ($1k \Omega \pm 10 \Omega$) so that terminal voltage may reach the reacted use v The leakage current when measured in 2 minutes shall not exceed to of the following equation. Leakage current<criteria> I <0.01CVor 3 (μA) whichever is greater.I: Leakage current (μA) C: Capacitance (μF) V: Rated DC Working Voltage (V)<condition> See 4.1, Norm Capacitance, for measuring frequency, voltage and to table. Measurements shall be made under the same conditions as those gi measurement of the capacitance.tan $\delta$$\frac{WV}{6.3}$$10$$16$$25$$35$$50$$63$Rated voltage (WV)$\frac{WV(V.DC)}{6.3}$$10$$16$$25$$35$$50$$63$Surge voltage$\frac{WV(V.DC)}{7.2}$$11.5$$18.4$$28.8$$40.3$$57.5$$72.$</condition></criteria></condition></criteria></td>	Nominal capacitance (Tolerance)Measuring Voltage measuring TemperatureNot more than $0.5V$ Measuring Temperature(Tolerance) <criteria> Shall be within the specified capacitance tolerance.<condition> After DC Voltage is applied to capacitors through the series protect ($1k \Omega \pm 10 \Omega$) so that terminal voltage may reach the reacted use v The leakage current when measured in 2 minutes shall not exceed to of the following equation. Leakage current<criteria> I <0.01CVor 3 (μA) whichever is greater.I: Leakage current (μA) C: Capacitance (μF) V: Rated DC Working Voltage (V)<condition> See 4.1, Norm Capacitance, for measuring frequency, voltage and to table. Measurements shall be made under the same conditions as those gi measurement of the capacitance.tan $\delta$$\frac{WV}{6.3}$$10$$16$$25$$35$$50$$63$Rated voltage (WV)$\frac{WV(V.DC)}{6.3}$$10$$16$$25$$35$$50$$63$Surge voltage$\frac{WV(V.DC)}{7.2}$$11.5$$18.4$$28.8$$40.3$$57.5$$72.$</condition></criteria></condition></criteria>

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE						
Revision	В		Page	6				
STANDARD MANUAL								

Aillen Electronic Technology Limited

		<	Condition>	>								
			STEP	Testing Temp	peratur	e(°C)				Time		
			1	20±				me to	reach	therm	al equ	ilibrium
			2	-55(-25	± 3		Ti	Time to reach thermal equilibrium				ilibrium
			3	20±	=2		Ti	Time to reach thermal equilibrium				ilibrium
			4	105±2		Ti	Time to reach thermal equilibrium					
			5	20±	=2		Ti	me to	reach	therm	al equ	ilibrium
4.5	Temperature characteristic IEC-60384-4 4.12	 <criteria> a. At +105°C, capacitance shall be within ±20% of their origin at +20°C, measured capacitance, tan δ shall be within limit of 4.3. The leakage current value at +105°C shall not more than 8 times the specified value. b. At step 5, tan δ shall be within the limit of 4.3. The leakage current value shall not more than the specified value. c. At step 5°C (-25°C), impedance (Z) ratio shall not exceed the value of the following table. </criteria> Rated Voltage (V) 6.3 10 16 25 35 50 63 100 Z-25°C/Z+20° Φ8 4 3 3 4 										
		u.	Capacitan	e, tan δ , and in	inpeda				Surcu	at 120	11Z.	
		<cond< td=""><td>ition></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></cond<>	ition>									
4.6	Sealing Tape	Peel angle: 165 to 180 °C refer to the surface on which the tape is glued. Peel speed: 300mm per minutes The peel strength must be $0.1 \sim 0.7$ N under these conditions. Peel speed: 300mm/min Cover tape Direction of unreeling $165 - 180^{\circ}$ Carrier tape										
4.0	Reel Strength	- D	irection of un	11				tape				
		•		reeling 165 - 11	80°		Carrier]			
	ed-date: 2022-01	•	Name	11	80°		Carrier					7

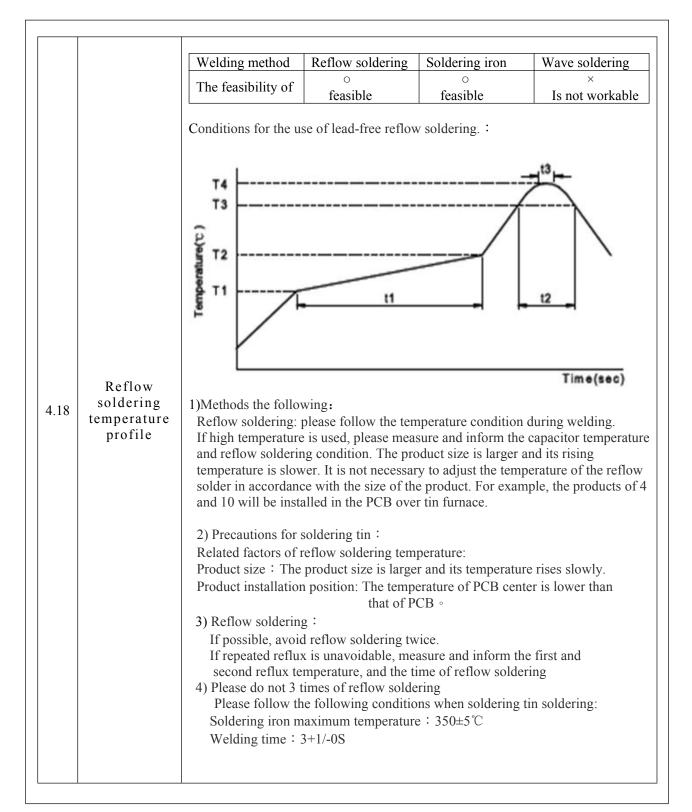
Aillen Electronic						
Technology						
Limited						

		continuously for 2000 hours recovering time following table: <criteria></criteria>	at a temperature of 105°C ± 2 with rated voltage applied +48/0 hours, Then the product should be tested after 16 at atmospheric conditions. The result should meet the Il meet the following requirements.
	Load life	Capacitance Change	\pm 30% of initial measured value.
4.7	test IEC-60384-	tan δ	300% or less of the value in 4.3
	4 4.13	Leakage current	Not more than the specified value.
		Appearance	No leakage of electrolyte or swelling of the case. All markings shall be legible
		Inner construction	No corrosion of tab terminals or electrodes
		voltage sl	the measurement of the leakage current, the D.C. rated all be applied across the capacitor and its protective (1Ω) for 30 mines after which it shall be discharged.
		$\pm 2^{\circ}$ C for 1000+48/0 Following this period be allowed to stabiliz Next they shall be co	n stored with no voltage applied at a temperature of 105 hours. the capacitors shall be removed from the test chamber and ed at room temperature for 4~8 hours. meeted to a series limiting resistor($1k \pm 100 \Omega$) with D.C. for 30min. After which the capacitors shall be discharged,
		and then, tested the c	
	Shelf	and then, tested the c	naracteristics.
	Shelf life	and then, tested the c Criteria> <u>The characteristic sha</u>	aracteristics.
4.8	life test	and then, tested the c	aracteristics.
4.8	life test IEC-60384-	and then, tested the c Criteria> The characteristic sha Change in capacitan	haracteristics. I meet the following requirements. $e \pm 30\%$ of initial measured value.
4.8	life test	and then, tested the c <criteria> The characteristic sha Change in capacitant tan δ Leakage current Appearance</criteria>	haracteristics. l meet the following requirements. e $\pm 30\%$ of initial measured value. 300% or less of the value in 4.3 Not more than 200% of the specified value No leakage of electrolyte or swelling of the case. All markings shall be legible
4.8	life test IEC-60384-	and then, tested the c Criteria> The characteristic sha Change in capacitant tan δ Leakage current	 aracteristics. l meet the following requirements. e ±30% of initial measured value. 300% or less of the value in 4.3 Not more than 200% of the specified value No leakage of electrolyte or swelling of the case.
4.8	life test IEC-60384-	and then, tested the c Criteria> The characteristic sha Change in capacitand tan δ Leakage current Appearance Inner construction Remark: If the capac	haracteristics. l meet the following requirements. e $\pm 30\%$ of initial measured value. 300% or less of the value in 4.3 Not more than 200% of the specified value No leakage of electrolyte or swelling of the case. All markings shall be legible
4.8	life test IEC-60384-	and then, tested the c <criteria> The characteristic sha Change in capacitand tan δ Leakage current Appearance Inner construction Remark: If the capac increase. P</criteria>	haracteristics. I meet the following requirements. $e \pm 30\%$ of initial measured value. 300% or less of the value in 4.3 Not more than 200% of the specified value No leakage of electrolyte or swelling of the case. All markings shall be legible No corrosion of tab terminals or electrodes tors are stored more than 1 year, the leakage current may
	life test IEC-60384-	and then, tested the c <criteria> The characteristic sha Change in capacitant tan δ Leakage current Appearance Inner construction Remark: If the capac increase. P necessary.</criteria>	haracteristics. I meet the following requirements. $e \pm 30\%$ of initial measured value. 300% or less of the value in 4.3 Not more than 200% of the specified value No leakage of electrolyte or swelling of the case. All markings shall be legible No corrosion of tab terminals or electrodes tors are stored more than 1 year, the leakage current may

		<condition></condition> Test temperature:15~35℃	
		Series resistor: $R = \frac{100\pm5}{C}$	<u>0</u>
4.9	Surge test IEC-60384- 4 4.9	R : protective resistor (kΩ C : nominal capacitance of Test voltage: Surge voltag No. of cycles: 1000cycles "ON" for 3 <criteria> Leakage current Capacitance Change tan δ Appearance Attention:</criteria>	 2) (μF) e item 4.4 Each cycles lasts for 6±0.5min 0±5 s "OFF" for 5±0.5min. Not more than the specified value. Within ±15% of initial value. Not more than the specified value. There shall be no leakage of electrolyte.
4.10	Vibration test IEC-60384- 4 4.8	diameter or 25 mm or Ca	ibration:3 orthogonal directions mutually each fo ge : 10Hz ~ 55Hz

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE					
Revision	В		Page	9			
STANDARD MANUAL							

Aillen Electronic	SMD aluminum	Aillen
Technology Limited	electrolytic capacitor CDUE Series	Allen


	I	1						
			<condition The capacito</condition 		ested under	the following condition	15:	
			Soldering temperature : 245±3°C					
			Dipping dep			: 2mm		
			Dipping spe			: 25±2.5mm/s		
	Solderability		Dipping tim			: 3±0.5s		
4.11	Test							
4.11	IEC-60384-4	-	<criteria></criteria>					
	4.6		Coating qu	ality		A minimum of 95% of	f the surfa	ce being
				lanty		immersed		
		-	<condition< td=""><td>></td><td></td><td></td><td></td><td></td></condition<>	>				
						page 13~14)		
			The capacit	or shall be	left at room	temperature for before	measurer	nent.
		<	Criteria>					
	Resistance to		Leakage c	urrent	Not more	e than the specified valu	ie.]
4.12	solder heat test		Capacitan	ce Change	Within :	±10% of initial value.		
			tan δ		Not more	e than the specified valu	ie.	
			Appearan	ce	There sh	all be no leakage of elec	ctrolyte.	
		E	Condition> Iumidity Ten		-4 No 4 12	methods, capacitor shal	1	
			•			n atmosphere of 90~95%		
			-			shall meet the followin		nent
				•	enenge		8	
	Damp		Criteria>	mont	Notmore	then the encodified value		
4.12	heat	-	Leakage cu			than the specified value	.	_
4.13	test		Capacitance	e Change		20% of initial value.	~ 1 1	_
	IEC60384-4		tan δ		Not more than 120% of the specified value.			·
	4.12		Appearance	2	There sha	ll be no leakage of elect	rolyte.	
Issue	d-date: 2022-01	1-05	Name	Specific	ation She	et – CDUE		
	Revision		B	1			Page	10
			D				1 age	10

Aillen Electror Technology Limited		SMD alun electrolytic CDUE S	capacitor	Aillen
4.14 Change of temperature test IEC-60384-4 4.7	Accordi oven, th (1)+25 (2)-55 (3)+25 (4)+10 (5)+25 (1) to (and ther condition <criteria The char Capacit tan δ</criteria 	ture cycle: ng to IEC60384 e condition accor Temperature °C °C °C °C °C °C °C °C °C °C	ding as below: e \leq	±2 Minutes 3 Minutes ±2 Minutes 3 Minutes 3 Minutes standard atmospheric ments shall be made. equirement.
4.15 Low Temperature Test	<pre>capacitor sha hours, after w <criteria> Leakage</criteria></pre>	Il be subjected which measurer current ance Change	to standard atmo nents shall be ma	he specified value. f initial value specified value.
Issued-date: 2022-01-	05 Name	Specificatio	on Sheet – CDUI	E
Revision	В			Page 11

Aillen Electronic Technology	SMD aluminum electrolytic capacitor	Aillen
Limited	CDUE Series	

	diameter D.C. test The capa	wing test only apply to those products with vent products at $\geq \emptyset 8$ with vent.
Vent Test 4.16 IEC-60384-4 4.16		> ter (mm) DC Current (A) or less 1
	the spec	> sion of gas after 30 minutes of the voltage application also meets ification. The vent shall operate with no dangerous conditions lames or dispersion of pieces of the capacitor and/or case.
4.17 Mechanical Characte ristics Test	s until bent w the test board differs, it sha Substrate before test Specimen (of SMD) - Substrate during test Vithout mech shall be satis	: re in the direction of the arrow at a rate of about 0.5 mm / ridth reaches 2 mm and hold for 60s. The board shall be 1 "B" as specified in JIS C 0051: 2002. If the land area Il be specified clearly in the next item. 1.6 mm ± 0.20 mm 1.6 m
Issued-date: 2022-01-	05 Name	Specification Sheet – CDUE
Revision	В	Page 12
	STA	ANDARD MANUAL

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE						
Revision	В		Page	13				
STANDARD MANUAL								

		Products cate	gory	SMD a	luminu	n electr	olytic capacitor			
		voltage (V)		4~50	4~50		≥63	4~100		≥160
		Product size		Φ4~6. 3×4.5 L	Φ4~6.3		Φ4~ 6.3	Φ8~18		≥Ф 12.5
			TEM $(T_1 \sim T_2, ^{\circ}C)$		150		0~180)~180		
		Preheating	Time (t ₁) Max, S	120		1				
		The	TEM (T_3, C)	230	217	230	217	217	230	217
		duration of the	Time (t ₂) Max, S	30	90	60	60	60	40	60
		The highest	TEM $(T_4, ^{\circ}C)$	250	20	50	250	2	50	240
		temperature	Time (t ₃) Max, S	5						
		Return the nu	umber act us if the condit	1	≤ 2					
4.18	soldering temperature profile	should be con	ering will reduce th nfirmed whether re							
		Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP pro reduced by a the capaciton	condition tempera duct will be damag bout 50%, the leak is damaged.	dition cha hest temp ust not ex rocess of ture or du ture or du ture curre	ange is berature kceed t reflow tration electros nt is la	still ba and the may heatin is grea static c	ased on he elect kimum g tempo ter that apacity	the re trode to tempe erature n the al	flow sc erminal rature. should bove ta	oldering l at the l increas ble, the ct is
		Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP pro- reduced by a the capaciton Recomme	e actual reflow con se note that the hig e aluminum shell m oducts during the p $200 \degree C \circ$ condition tempera oduct will be damag bout 50%, the leak is damaged. nded Land Size (I	dition cha hest temp ust not ex rocess of ture or du ged. The e age curre	ange is berature kceed t reflow tration electros nt is la	still ba and the may heatin is grea static c	ased on he elect kimum g tempo ter that apacity	the re trode to tempe erature n the al	flow sc erminal rature. should bove ta	ldering at the l increas ble, the ct is
		Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP pro reduced by a the capaciton ●Recomme	e actual reflow con se note that the hig e aluminum shell m oducts during the p $200 \degree C \degree$ condition tempera oduct will be damag bout 50%, the leak is damaged. nded Land Size (I	o dition cha hest temp ust not ex rocess of ture or du ted. The e age curre J nit: mm	ange is berature kceed t reflow tration electros nt is la	still ba and the may heatin is grea static c	ased on he elect kimum g tempo ter than apacity o to m 2	the re trode to tempe erature n the al	flow sc erminal rature. should bove ta	ldering at the l increas ble, the ct is
		Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP pro reduced by a the capaciton ●Recomme 反寸Size 	e actual reflow con se note that the hig e aluminum shell m oducts during the p $200 \degree C \circ$ condition tempera oduct will be damag bout 50%, the leak is damaged. nded Land Size (U X Y 1.6 2.6	o dition cha hest temp ust not ex rocess of ture or du ged. The e age curre J nit: mm G 1.0	ange is berature kceed t reflow tration electros nt is la	still ba and the may heatin is grea static c	ased on he elect kimum g tempo ter than apacity o to m 2	the re trode to tempe erature n the al of the A), and	flow sc erminal rature. should bove ta produc l the ou	ldering at the l increas ble, the ct is
		Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP prc reduced by a the capaciton \bigcirc Recomme \square	e actual reflow con se note that the hig e aluminum shell m oducts during the p 200 $^{\circ}C$ $^{\circ}$ condition tempera oduct will be damag bout 50%, the leak is damaged. nded Land Size (U X Y 1.6 2.6 1.6 3.0	 dition chathest temp ust not exprocess of ture or du ture or du ture. The expression of ture or du ture or du ture. Jnit: mm G 1.0 1.4 	ange is berature kceed t reflow tration electros nt is la	still ba and the may heatin is grea static c	ased on he elect kimum g tempo ter than apacity o to m 2	the re trode to tempe erature n the al of the A), and	flow sc erminal rature. should bove ta produc l the ou	ldering at the l increas ble, the ct is
		Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP proceed by a the capaciton Recomme $R = \frac{R + Size}{\Phi 4}$	e actual reflow con se note that the hig e aluminum shell m oducts during the p 200 °C \circ condition tempera oduct will be damag bout 50%, the leak is damaged. nded Land Size (I X Y 1.6 2.6 1.6 3.0 1.6 3.5	dition cha hest temp ust not ex- rocess of ture or du ture or du t	ange is berature kceed t reflow tration electros nt is la	still ba and the may heatin is grea static c	ased on he elect kimum g tempo ter than apacity o to m 2	the re trode to tempe erature n the al of the A), and	flow sc erminal rature. should bove ta product the out	ldering at the l increase ble, the ct is itside of
		Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP prc reduced by a the capaciton \bigcirc Recomme \square	e actual reflow con se note that the hig e aluminum shell m oducts during the p $200 \degree C \circ$ condition tempera oduct will be damag bout 50%, the leak is damaged. Inded Land Size (U X Y 1.6 2.6 1.6 3.0	 dition chathest temp ust not exprocess of ture or du ture or du ture. The expression of ture or du ture or du ture. Jnit: mm G 1.0 1.4 	ange is berature kceed t reflow tration electros nt is la	still ba and the may heatin is grea static c	ased on he elect kimum g tempo ter than apacity o to m 2	the re trode to tempe erature n the al of the A), and	flow sc erminal rature. should bove ta produc l the ou	ldering at the l increase ble, the ct is itside of
		Although the method, plea bottom of the OP - CAP pr to more than If the reflow OP-CAP pro- reduced by a the capaciton ●Recomme 反寸Size $\Phi4$ $\Phi5$ $\Phi6.3$ $\Phi8$	e actual reflow con se note that the hig e aluminum shell m oducts during the p 200 °C \circ condition tempera oduct will be damag bout 50%, the leak is damaged. nded Land Size (U X Y 1.6 2.6 1.6 3.0 1.6 3.5 2.5 3.5	 dition chahest temp ust not exprocess of ture or du ted. The expression of the expre	ange is berature kceed t reflow tration electros nt is la	still ba and the may heatin is grea static c	ased on he elect kimum g tempo ter than apacity o to m 2	the re trode to tempe erature n the al of the A), and	flow sc erminal rature. should bove ta product the out	ldering at the l increase ble, the ct is itside of

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE		
Revision	В		Page	14
	STA	ANDARD MANUAL		

Aillen Electronic Technology Limited

5. Product Dimensions & Maximum Permissible Ripple Current

Size ϕ D x L (mm) , Maximum Allowable Ripple Current (mA r.m.s/+105 °C,100kHz), Maximum Impedance($\Omega/20$ °C,100kHz)

	WV		6.3(0J)			10(1A)			16(1C)		2	5(1E)	
μF	Item	D×L	Impeda nce	Ripple Current	D×L	Impeda nce	Ripple Current	D×L	Impedan ce	Ripple Current	D×L	Imped ance	Ripple Current
	4.7							4x5.4	4.0	38	4x5.4	4.5	50
	10							4x5.4	4.5	50	4x5.4	4.5	50
	22	4x5.4	4.5	50	4x5.4	4.50	50	4x5.4 5x5.4	4.5 1.9	50 80	6.3x5.4	1.1	115
	33	5x5.4	1.9	80	5x5.4	1.90	80	6.3x5.4	1.1	115	6.3x5.4	1.1	115
	47	4x5.4 5x5.4	4.5 1.9	50 80	6.3x5.4	1.10	115	5x5.4 6.3x5.4	1.9 1.1	80 115	6.3x5.4	1.1	115
	68										6.3x5.4	1.1	115
					5x5.4	1.90	80	6.3x5.4	1.1	115	6.3x5.4	1.0	140
	100	6.3x5.4	5x5.4 1.1	.1 115	6.3x5.4	1.10	115	6.3x7.7	0.85	150	6.3x7.7 8x6.5	0.85 0.85	150 150
	150	6.3x5.4	1.1	115	6.3x7.7	0.85	150	6.3x7.7	0.85	150	8x10.2	0.43	240
					6.3x5.4	1.10	115	6.3x7.7	0.85	150			
	220	6.3x7.7	0.85	150	6.3x7.7 8x6.5	0.85 0.85	150 150	8x10.2	0.43	0.43 240	8x10.2	0.43	240
	330	6.3x7.7	0.85	150	6.3x7.7 8x10.2	0.85	150 240	8x10.2	0.43	240	10x10.2	0.23	360
	470	6.3x7.7	0.85	150	6.3x7.7	0.85	150	8x10.2	0.43	240	10x10.2	0.23	360
	470	8x10.2	0.43	240	8x10.2	0.43	240	10x10.2	0.23	360	10x10.2	0.23	500
	1000	10x10.2	0.23	360	10x10.2	0.23	360				12.5x13.5	0.15	680
	1500	10x10.2	0.23	360									

	WV		35(1V)		50(1H)				
μF	Item	D×L	Impedance	Ripple Current	D×L	Impedance	Ripple Current		
	1.0				4x5.4	7.3	38		
	2.2				4x5.4	7.3	38		
	3.3				4x5.4	7.3	38		
	4.7	4x5.4	4.5	50	4x5.4	7.3	38		
	10	5x5.4	1.9	80	5x5.4 6.3x5.4	3.8 2.2	53 103		
	22	6.3x5.4	1.1	115	6.3x5.4	2.2	103		
	33	6.3x5.4		115	6.3x7.7	1.7	116		
	47 6.3x5.4 8x6.5		1.1 0.85	115 150	6.3x7.7	1.7	116		
	100	6.3x7.7 8x10.2	0.85 0.43	150 240	8x10.2	0.85	185		
	150	10x10.2	0.23	360	10x10.2	0.45	418		
	220	8x10.2	0.43	240	10 10 2	0.45	410		
	220	10x10.2	0.23	360	10x10.2	0.45	418		
	330	10x10.2	0.23	360					
	470	10x10.2	0.23	360					

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE		
Revision	В		Page	15
	STA	ANDARD MANUAL		

Size φ D x L (mm), Maximum Allowable Ripple Current (mA r.m.s/+105°C,100kHz), Maximum Impedance($\Omega/20$ °C,100kHz)

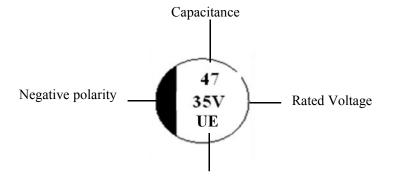
	IVIAXIIII	uni impedance	C(32/20C, R)	JOKI IZ)			
	WV		63(1V)		1	00(1H)	
μF	Item	D×L	Impedance	Ripple Current	D×L	Impedan ce	Ripple Current
	10	6. 3x5. 4	1.5	80	8x10.5	1.3	130
	22	6. 3x7. 7	1.2	120	8x10.5	1.3	130
	27				8x10.5	1.3	130
	33	8x10.5	0.65	250	10x10.5	0.7	200
	47	8x10.5	0.65	250	10x10.5	0.7	200
	100	10x10.5	0.35	400			
	120	10x10.5	0.35	400			

Remark:

1)Specification are subject to change without notice should a safety or technical concern arise regarding the product ,please be sure to contact our sales offices ;

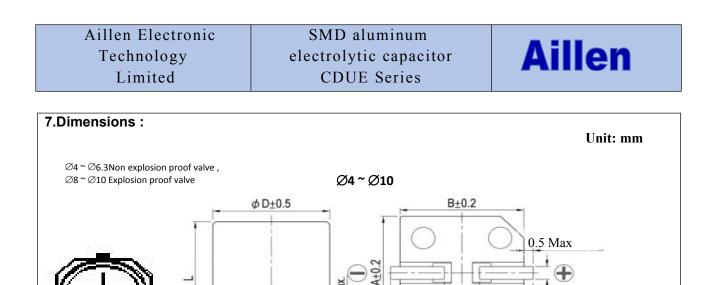
2)The sizes in the above table are all general specifications. If you need other specifications, please contact us \circ

Frequency Coefficient of Allowable Ripple Current

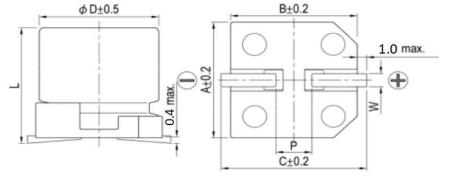

Frequency	50Hz	120Hz	300Hz	1kHz	≥10kHz
Coefficient	0.64	0.70	0.75	0.85	1.00

Temperature coefficient

Ambient Temperature(°C)	105	85	≤70
Coefficient	1.0	1.5	2.0


6. Marking :

Capacitors shall be legibly marked with the following:



Manufacture's mark

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE									
Revision	В		Page	16							
	STANDARD MANUAL										

Ø12.5~Ø18

0.3 max

 \geq

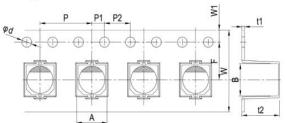
P C±0.2

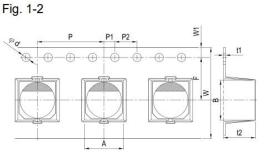
Dimensions (Unit: mm)

Size	Φ4×5.4	Φ5×5.4	Φ6.3×5.4	Ф6.3×7.7	Ф8×6.5	Φ8×10.2	Φ10×10.2	Φ12.5×13.5
А	4.3	5.3	6.6	6.6	8.3	8.3	10.3	13.0
В	4.3	5.3	6.6	6.6	8.3	8.3	10.3	13.0
С	5.1	5.9	7.2	7.2	9.0	9.0	11.0	13.7
Р	1.0±0.2	1.5 ± 0.2	2.0±0.2	2.0±0.2	3.1±0.2	3.1±0.2	4.7±0.2	4.4±0.2
W	0.5~0.8	0.5~0.8	0.5~0.8	0.5~0.8	0.5~0.8	0.7~1.1	0.7~1.3	1.1~1.4
L	5.4 -0. 3/+0. 5	5.4 -0. 3/+0. 5	5.4 -0. 3/+0. 5	7.7 -0.3/+0.5	6.5 -0. 3/+0. 5	10.2±0.5	10.2±0.5	13.5±0.5

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE		
Revision	В		Page	17
	STA	ANDARD MANUAL		

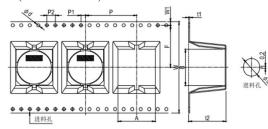
Aillen


8. Taping Specifications:


Applicable standard JIS C0806 and IEC 60286.

8.1 Carrier Tape and Dimension

Fig.1 (\emptyset 4 ~ \emptyset 18)


Fig. 1-1

W (mm)	P (mm)	F (mm)	A₀ (mm)	B ₀ (mm)	T₂ (mm)	Ød	P1	P2	t1	W1	Applicable
12	8	5.5	4.7	4.7	5.8	1.5	2.0	4.0	0.4	1.75	Fig.1-1
12	12	5.5	6.0	6.0	5.8	1.5	2.0	4.0	0.4	1.75	
16	12	7.5	7.0	7.0	5.8	1.5	2.0	4.0	0.4	1.75	
16	12	7.5	7.0	7.0	8.3	1.5	2.0	4.0	0.4	1.75	
16	12	7.5	7.0	7.0	11.0	1.5	2.0	4.0	0.4	1.75	
16	12	7.5	8.7	8.7	6.8	1.5	2.0	4.0	0.4	1.75	5:- 1 2
24	16	11.5	8.7	8.7	11.0	1.5	2.0	4.0	0.4	1.75	Fig.1-2
24	16	11.5	8.7	8.7	13.0	1.5	2.0	4.0	0.4	1.75	
24	16	11.5	10.7	10.7	11.0	1.5	2.0	4.0	0.4	1.75	
24	16	11.5	10.7	10.7	13.0	1.5	2.0	4.0	0.4	1.75	
24	16	11.5	10.7	10.7	13.0	1.5	2.0	4.0	0.4	1.75	
	(mm) 12 12 16 16 16 16 24 24 24 24 24	(mm)(mm)128121216121612161224162416241624162416	(mm)(mm)(mm)1285.512125.516127.516127.516127.516127.5241611.5241611.5241611.5241611.5	InterpretationInterpretation(mm)(mm)(mm)1285.54.712125.56.016127.57.016127.57.016127.57.016127.58.7241611.58.7241611.510.7241611.510.7241611.510.7	Image: https://image: https://image	(mm)(mm)(mm)(mm)(mm)1285.54.74.75.812125.56.06.05.816127.57.07.05.816127.57.07.08.316127.57.07.011.016127.58.78.76.8241611.58.78.713.0241611.510.710.713.0241611.510.710.713.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(mm)(mm)(mm)(mm)(mm)(mm)(mm)(mm)1285.54.74.75.81.52.012125.56.06.05.81.52.016127.57.07.05.81.52.016127.57.07.08.31.52.016127.57.07.011.01.52.016127.58.78.76.81.52.016127.58.78.711.01.52.0241611.58.78.713.01.52.0241611.510.710.713.01.52.0241611.510.710.713.01.52.0	(mm)(m	(mm)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(m1)(mm)(m1)(mm)(m	(mm)(m

Fig1-3(\emptyset 12.5 ~ \emptyset 18)

Size	W (mm)	P (mm)	F (mm)	A (mm)	B (mm)	t ₂ (mm)	Φd	P ₁	P ₂	t ₁	\mathbf{W}_1	Applic able
Ф12.5*13.5	32	24	14.2	13.4	13.4	14.5	1.5	2.0	4.0	0.5	1.75	
Ф12.5*16	32	24	14.2	13.4	13.4	17	1.5	2.0	4.0	0.5	1.75	
Ф16*16.5	44	28	20.2	17.5	17.5	17.5	1.5	2.0	4.0	0.5	1.75	Fig.1-3
Φ16*21.5	44	28	20.2	17.5	17.5	22.5	1.5	2.0	4.0	0.5	1.75	
Φ18*16.5	44	32	20.2	19.5	19.5	17.5	1.5	2.0	4.0	0.5	1.75	

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE					
Revision	В		Page	18			
STANDARD MANUAL							

Aillen Electronic Technology Limited			SMD aluminum electrolytic capacitor CDUE Series		Ai	illen	
8.2 Reel Package: Fig. 2-1					Fig	. 2-2 Reel 1	Polarity
	mains		Pull out direction				
		~ =	Ø6.3	Ø8x6.5	Ø8x10.2/10.5	Ø10	Ø12.5
Case size	× Ø4	ω_5		10 011010		<i>i</i> 0 10	~~ 1=.0
1 Polarity: An 2 The leader 1 embossed se	d node on the ength of the ctions in w	ne tape shal which no pa	18 side of the ll not be l arts are co	ess than 40 ntained.	26 0mm including 10	26 or more	34
W cking Metho 1 Polarity: Ar 2 The leader 1 embossed se	d node on the ength of the ctions in w core is pre-	14 e opposite s ne tape shal which no pa ovided with	18 side of the ll not be l arts are co	e feed hole ess than 40 intained. 40mm long Chip compo	0mm including 10 g empty section.	or more	
W cking Metho 1 Polarity: Ar 2 The leader 1 embossed se The winding	d node on the ength of th ctions in w core is pro- Empt	14 e opposite s ne tape shal which no pa ovided with y section	18 side of the ll not be le urts are co h an over	e feed hole ess than 40 ntained. 40mm long Chip compo mounting s	0mm including 10 g empty section.	or more	
W cking Metho 1 Polarity: Ar 2 The leader 1 embossed se The winding	d node on the ength of th ctions in w core is pro- Empt	14 e opposite s ne tape shal which no pa ovided with y section	18 side of the ll not be le urts are co h an over	e feed hole ess than 40 ntained. 40mm long Chip compo mounting s	0mm including 10 g empty section.	or more	
W cking Metho 1 Polarity: An 2 The leader 1 embossed se The winding	d node on the ength of the ctions in w core is pro- Empt	14 e opposite s ne tape shal which no pa ovided with y section	18 side of the ll not be le urts are co h an over	e feed hole ess than 40 ntained. 40mm long Chip compo mounting s	0mm including 10 g empty section.	or more	section) Start of

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE					
Revision	В		Page	19			
STANDARD MANUAL							

10. Application guideline for V-CHIP aluminum electrolytic capacitors

10.1 Circuit Design:

- 1) Please make sure the environmental and mounting conditions to which the capacitor will be exposed are within the conditions specified in catalogue.
- 2) Operating temperature and applied ripple shall be within specification.
- 3) Appropriate capacitors which comply with the life requirement of the products should be selected when designing the circuit.
- 4) Aluminum electrolytic capacitors are polar. Make sure that no reverse voltage or AC voltage is applied to the capacitors. Please use bi-polar capacitors for a circuit that can possibly see reversed polarity.

Note: Even bi-polar capacitors cannot be used for AC voltage application.

- 5) Do not use aluminum electrolytic capacitors in a circuit that requires rapid and very frequent charge / discharge. In this type of circuit, it is necessary to use a special design capacitor with extended life characteristics.
- 6) Do not apply excess voltage.

-Please pay attention to that the peak voltage, which is DC voltage overlapped by ripple current, will not exceed the rated voltage.

- In the case where more than 2 aluminum electrolytic capacitors are used in series, please make sure that applied voltage will be lower than rated voltage and the voltage will be applied to each capacitor equally by using a balancing resistor in parallel with the capacitor

- 7) Aluminum electrolytic capacitors shall not be used under the following environmental conditions:
 - Capacitors will be exposed to water (including condensation), brine or oil.
 - Ambient conditions that include toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonium, etc.
 - Ambient conditions that expose the capacitor to ozone, ultraviolet ray and radiation.
 - Severe vibration and physical shock conditions that exceed specification.
 - Vibration test condition:

vibration frequency range $: 10 \sim 55 \sim 10$ Hz

sweep rate : $10 \sim 55 \sim 10$ Hz/minute

sweep method : logarithmic

amplitude or acceleration : 1.5mm (max. acceleration is 10G)

direction of vibration : X, Y, Z direction

testing time: 2 hours per each direction

Shock is not applicable normally.

If a particular condition is required, please contact our sales office.

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE				
Revision	В		Page	20		
STANDARD MANUAL						

- 8) The main chemical solution of the electrolyte and the separator paper used in the capacitors are combustible. The electrolyte is conductive. When it comes in contact with the PC board, there is a possibility of pattern corrosion or short circuit between the circuit pattern, which could result in smoking or catching fire. Do not locate any circuit pattern beneath the capacitor end seal.
- 9) Do not design a circuit board that the heat generating components are placed near the aluminum electrolytic capacitor or on the reverse side of PC board, if that just under the capacitor.
- 10) Electrical characteristics may vary depending on changes in temperature and frequency. Please consider this variation when you design circuits.
- 11) When you install more than 2 capacitors in parallel, please consider the balance of current flowing into the capacitors.
- 12) While mounting capacitors on double-side PC board, the capacitors should be away from those unnecessary base plate holes and connection holes.

10.2 Mounting

- 1)Once a capacitor has been assembled in the set and power applied, do not attempt to re-use the capacitor in other circuits or application.
- 2)Leakage current of the capacitors that have been stored for more than 2 years may increase.
 - When leakage current has increased, please perform a voltage treatment using a $1k\Omega$ resistor.
- 3)Please confirm specifications and polarity before installing capacitors on the PC board.
- 4)Do not drop capacitors on the floor, nor use a capacitor that was dropped.
- 5)Do not deform the capacitor during installation.
- 6)Please pay attention to the mechanical shock to the capacitor by suction nozzle of the automatic insertion machine or automatic mounter, or by product checker, or by centering mechanism.

10.3 Reflow soldering

- 1) Please follow "Reflow Soldering Conditions" in catalogue.
- 2) When an infrared heater is used, please pay attention to the extent of heating since the absorption rate of infrared will vary due to difference in the color and size of the capacitor.
- 3) Do not tilt lay down or twist the capacitor body after the capacitor are soldered to the PC board.
- 4) Do not carry the PC board by grasping the soldered capacitor.
- 5) Please do not allow anything to touch the capacitor after soldering. If PC boards are stored in stack, please make sure the PC board or other components away from the capacitor.
- 6) The capacitors shall not be effected by any radiated heat from the soldered PC board or other components after soldering.

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE					
Revision	В		Page	21			
STANDARD MANUAL							

7) Cleaning

(1) Do not clean capacitors with halogenated cleaning agent. However, if it is necessary to clean with halogenated cleaning agent, please contact our sales office.

(2) Recommended cleaning method:

Applicable : Any type, any ratings

Cleaning conditions : Total cleaning time shall be within 2 minutes by immersion, ultrasonic or other methods. Temperature of the cleaning agents shall be 40°C or below. After cleaning, capacitors should be dried by using hot air for the minimum 10 minutes along with the PC board mounted. Hot air temperature should be within the maximum operating temperature of the capacitor. Insufficient dryness after water rinse may cause appearance problems, such as bottom-plate bulge and etc.

(3)Avoid using ozone destructive substances as cleaning agents for protecting global environment.

10.4 In the Equipment

1) Do not directly touch terminal by hand.

2) Do not link positive terminal and negative terminal by conductor, nor spill conductible liquid such as alkaline or acidic solution on or near the capacitor.

3)Please make sure that the ambient conditions where the set is installed are free from spilling water or oil, direct sunlight, ultraviolet rays, radiation, poisonous gases, vibration or mechanical shock.

10.5 Maintenance and Inspection

Please periodically inspect the aluminum capacitors that are installed in industrial equipment. The following items should be checked:

Appearance: remarkable abnormality such as pressure relief vent opening, electrolyte leaking, etc.

Electrical characteristics: capacitance, dielectric loss tangent, leakage current and etc., which are specified in catalogue or alternate product specification.

10.6 In an Emergency

- 1) If you see smoke due to operation of safety vent, please turn off the main switch or pull out the plug from the outlet.
- 2) If you breathe the gas or ingest the electrolyte, please wash out your mouth and throat with water immediately.

3) If your skin is exposed to the electrolyte, please wash it away using soap and water.

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE					
Revision	В		Page	22			
STANDARD MANUAL							

10.7 Storage

1) Do not keep capacitor in high temperature and high humidity atmosphere. Storage conditions should be:

Temperature: $5^{\circ}C \sim 35^{\circ}C$ Humidity : lower than 75% Place : Indoor

- 2) Avoid ambient conditions where capacitors are covered with water, brine or oil.
- 3) Avoid ambient conditions where capacitors are exposed to ozone, ultraviolet ray or radiation.

10.8 Disposal

Please take either of the following methods in disposing capacitors.

- 1) Incinerate them after crushing capacitors or making a hole on the capacitor body.
- 2) If incineration is not applicable, hand them over to a waste disposal agent and have them buried in landfills.

Issued-date: 2022-01-05	Name	Specification Sheet – CDUE					
Revision	В		Page	23			
STANDARD MANUAL							