ALTERNATION HISTORY RECORDS 变更记录

Date 日期	Version 版本	Mark 标记	Page 页码	Description 描述	Drafter 制定者	Approver 审批者
2020－6－22	A	1		首次发行		常斯琴

1. Applicable Scope:

This standard specification is for use in consumer electronics, computers, telecommunications, control instruments...etc.
2. Part Number:

It is composed by Type, Rated Wattage, Nominal Resistance, Tolerance and Package.
e.g.
$\underline{\text { RFKN }} 3 \mathrm{~W} \quad 33 \mathrm{R} \quad \mathrm{J} \quad \mathrm{T} / \mathrm{B}$

Type Rated Wattage Nominal Resistance Tolerance Package
2.1Type:

Fusible Wire Wound Resistors, Flameproof are called "RFKN"
2.2 Rated Wattage:

Shown by "W", such as $1 \mathrm{~W}, ~ 2 \mathrm{~W}, ~ 3 \mathrm{~W}, ~ 5 \mathrm{~W}, ~ 7 \mathrm{~W}, ~ 10 \mathrm{~W}$.
2.3 Nominal Resistance :
$\Omega, \mathrm{K} \Omega$ are its unit which be in accordance with JIS-C6409 article 6 (EIA RS-196A) series.
Letter " 33 R " indicates resistance value 33Ω.
2.4 Tolerance:

It is measured by Bridge-method at room temperature and expressed by a capital letter.
$G= \pm 2 \% ; J= \pm 5 \%$.
2.5 Package:
$T / B=$ tape in box ; T/R $=$ tape \& reel ; Nil = Bulk.
Remark : RFKN • RFSQ Series Resistors are RoHS Compliant.

3. Rated Power:

Rated power is the value of Max load wattage specified at the ambient temperature of $70^{\circ} \mathrm{C}$, and shall meet the functions of electrical and mechanical performance. When the ambient temperature surpasses above mentioned temperature, the value declines as per following DERATING CURVE.

3.1 Rated Voltage:

It is calculated through the following formula:
where
E: rated voltage (V)
P: rated power (W)
R: nominal resistance value (Ω)

$$
E=\sqrt{P^{*} R}
$$

However, in case the voltage calculated exceeds the maximum load voltage, such the maximum load voltage shall be regarded as its rated voltage, means whichever less.
4. Dimension and Structure:
4.1 Dimension:

RFKN

RFSQ

Unit: mm									
TYPE		$\mathrm{L} \pm 1.5$	$\mathrm{D} \pm 1$	$\mathrm{H} \pm 1$	$W \pm 1$	$\mathrm{C} \pm 3$	$\mathrm{d} \pm 0.1$	Resistance Range	Dielectric Withstanding Vol tage
RFKN	RFSQ								
1W		9 ± 1	4			28	0.65	$0.1 \Omega \sim 20 \Omega$	350 V
2W		11 ± 1	5			28	0.8	$0.1 \Omega \sim 100 \Omega$	500V
3W		13 ± 1	5.5			38	0.8	$0.1 \Omega \sim 200 \Omega$	500V
5W		19 ± 1	6.5			38	0.8	$0.1 \Omega \sim 200 \Omega$	500V
	2W	18		7	7	23	0.65	$0.1 \Omega \sim 10 \mathrm{~K} \Omega$	1000V
	3W	22		8	8	35	0.8	$0.1 \Omega \sim 33 \mathrm{~K} \Omega$	1000V
	5W	22		9	10	35	0.8	$0.1 \Omega \sim 50 \mathrm{~K} \Omega$	1000V
	7W	35		9	10	35	0.8	$0.1 \Omega \sim 50 \mathrm{~K} \Omega$	1000V
	10W	48		9	10	35	0.8	$0.1 \Omega \sim 50 \mathrm{~K} \Omega$	1000V

- The resistance value will be as high as 100 times the original value after fusing.

4.2 Structure:

4.2.1 Terminal:

Terminal is to be firmly connected with resistors element, both electrically and mechanically, and allow easy soldering.
4.2.2 Marking:
4.2.2.1 RFSQ :Marking is made on the surface with Rated Wattage, Nominal Resistance, Tolerance, Special Wire and Maker's trade mark.
4.2.2.2 RFKN : Marking is made on resistors surface by color coding. 1st,2nd,3rd : nominal resistance. 4th: tolerance.
5th:black color band for fusible wire wound resistors, flameproof.
4.2.3 Coating:

Coating is done by flameproof paint (resistant to $800^{\circ} \mathrm{C}$) or Silicon Resin which is solid enough to be free from looseness, crack and easy breakage. It is also resistant to cleaning and industrial solvents, and the paint shall be limited within 2 mm of lead wires from resistor body.
5. Operating Temperature Range: $-55^{\circ} \mathrm{C} \sim 200^{\circ} \mathrm{C}$ (FKNW) $-55^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$ (FSQW)
6. Mechanical Performance:
6.1 Terminal tensile:

To fix the resistor body, a static load of 2.5 kgs . (RFSQ $: 4.5 \mathrm{kgs}, ~ \mathrm{RFKN} 1 \mathrm{~W}: 1 \mathrm{~kg}$) is to be gradually applied into the terminal for 10 seconds without causing any looseness and fall.
6.2 Twist withstand:

To bend the lead wire at the point of about 6 mm from resistor body to 90°, then catch the wire at 1.2 $\pm 0.4 \mathrm{~mm}$ apart from the bent point end and turn it (clockwise) by 360 degrees perpendicular to the resistor axis at speed of 5 seconds per turn, and do the same counterclockwise again which constitute a whole turn. Repeat the turn 2 times without causing any break and looseness.
7. Electrical Performance:
7.1 Resistance Temperature Coefficient:

It shall be within $\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
$\mathrm{T} . \mathrm{C}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)=[(\mathrm{R} 2-\mathrm{R} 1) \div \mathrm{R} 1] \times[1 \div(\mathrm{T} 2-\mathrm{T} 1)] \times 10^{6}$
where $\quad \mathrm{R} 1:$ resistance value at reference temperature
R2: resistance value at test temp.
T 1 : reference temp. (usu. $25^{\circ} \mathrm{C}$)
T2: test temp. (about $75^{\circ} \mathrm{C}$)
7.2 Temperature Cycle:

Following temp. cycles are to be made 5 times and then put at room temp. for one hour, the resistance value change rate between pre-and-post test shall be within $\pm 1 \%$.

Steps	Temperature ${ }^{\circ} \mathrm{C}$)		Time (minutes)
$1^{\text {st }}$ step	RFKN	RFSQ	30
	-55 ± 3	-55 ± 3	
$2^{\text {nd }}$ step	Room temp.		3
$3^{\text {rd }}$ step	RFKN		RFSQ
	200 ± 3	150 ± 3	30
$4^{\text {th }}$ step	Room temp.		3

Aillen

FUSIBLE WIRE WOUND RESISTORS, FLAMEPR00F

7.3 Short Time Over Load:

When the resistors are applied 2.5 times as much as rated voltage for 5 seconds continuously, it shows no evidence of arc, flame...etc. Removing the voltage and place the resistors to the normal condition for 30 minutes, the resistance value change rate between pre-and-post test shall be within $\pm 2 \%$.
7.4 Insulation Character :

Resistors are located in a V-shaped metal trough. Using the DC 500 V (FKNW 1W: 100V) megger instrument 2 poles to clutch either side of lead wires and metal trough, measuring the Insulation Resistance which shall be over $1000 \mathrm{M} \Omega$.
7.5 Voltage Withstanding:

Resistors are located in a V-shaped metal trough. RFSQ Applying AC 1000 V for one minute, FKNW
Applying AC 500 V (RFKN $1 \mathrm{~W}: 350 \mathrm{~V}$) fo r one minute and should find no physical damage to the resistors, such as arc, char...etc.
7.6 Load Life:

The resistors arrayed are sent into the $70^{\circ} \mathrm{C}$ oven, applying rated voltage at the cycle of 1.5 hours ON, 0.5 hour OFF for 1000_{-0}^{+18} hours in total. Then, after removing the voltage, take the resistors out of the oven and left under normal temp. for one hour cooling. The resistance value change rate between pre-and-post test shall be within $\pm 5 \%$.
7.7 Moisture-proof Load Life:

The resistors arrayed are placed into a constant temp./humidity oven at the temp. of $40 \pm 2^{\circ} \mathrm{C}$ and the humidity of $90 \sim 95 \%$, then $1 / 10 \mathrm{DC}$ rated power is applied for 1.5 hours and cut off for 0.5 hour. The similar cycle will be repeated for $1000_{-0}^{\text {+18 }}$ hours in total (including cut-off time). Then remove the voltage, taking the resistors out of the oven and leaving them at room temp. for one hour. The resistance value change rate between pre-and-post test shall be within $\pm 5 \%$. There also shall be no evidence of remarkable change on appearance, and the marking shall not be illegible.

7.8 Solder-ability:

The leads with flux are dipped in a melted solder of $235 \pm 5^{\circ} \mathrm{C}$ for 2 seconds, more than 95% of the circumference of the lead wires shall be covered with solder.
7.9 Resistance to Soldering Heat:

Two leads are together dipped in a melted solder of $270 \pm 5^{\circ} \mathrm{C}$ for 10 ± 1 seconds, or $350 \pm 10^{\circ} \mathrm{C}$ for 3.5 ± 0.5 seconds, Then remove the resistors and leaving them at room temp. for one hour. The resistance value change rate between pre-and-post test shall be within $\pm 1 \%$.
7.10 Nonflammability:

The resistors are applied the power of 16 times the rated wattage for 5 min . and shall not get flame.
7.11 Fusing Characteristics:
7.11.1 The resistors are applied the power of 16 times the rated wattage and shall be fusing within 60 sec.
7.11.2 Fusing time can also be consulted between buyers and the manufacturer before producing.

8. Packing:

8.1 Taping Specifications:

8.2 Tape in Box:

Unit: mm						
RFKN Type		QTY PER B0X	a	b	c	
1 W	T-52	1,000	75	55	255	
2 W	T-63	1,000	85	105	260	
3 W	T-76	1,000	106	110	265	

8. 3 Tape \& Reel:

Unit: mm								
RFKN	TYPE	QTY PER REEL	A	B	C	D	E	F
1W	T-52	2,500	285	310	75	80	295	295
$2 W$	T-63	2,500	285	310	75	80	295	295
$3 W$	T-76	1,000	285	310	90	105	295	295

