

ALTERNATION HISTORY RECORDS 变更记录

版本	Mark 标记	Page 页码	Description 描述	Drafter 制定者	Approver 审批者
В	/	/	In release 换版发行	余大光	彭旭
	В	В /	B / /	B / / In release 换版发行 In release 换版发行 In release 换版发行 In release 换版发行	B / / In release 換版发行 余大光 Image: Second se

1. Part Numbering System):

<u>CR</u>	<u>03</u>	J 	$\frac{\mathbf{A}}{ }$	<u>10K</u>
<u>Series Name</u> Chip Resistor: CR: Thick Film chip resistors	<u>Type</u> Inch (mm) 02-0402(1005) 03-0603(1608) 05-0805(2012) 06-1206(3216)	$\frac{\text{Tolerance}}{\text{B}=\pm 0.1\%}$ $\text{D}=\pm 0.5\%$ $\text{F}=\pm 1\%$ $\text{J}=\pm 5\%$ $\text{P}: \text{Jumper}$	Package A=4Kpcs/7''Reel B=5Kpcs/7''Reel C=10Kpcs/7''Reel M=15Kpcs/7''Reel D=10Kpcs/10''Reel E=20Kpcs/10''Reel	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

2. FEATURE

- High reliability and stability
- -Reduced size of final equipment
- -Lower assembly costs
- -Higher component and equipment reliability
- -RoHS 2 compliant and Halogen free products

3. APPLICATION

- -Consumer electrical equipment
- -EDP, Computer application
- -Telecom application

4. DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance by laser cutting of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.

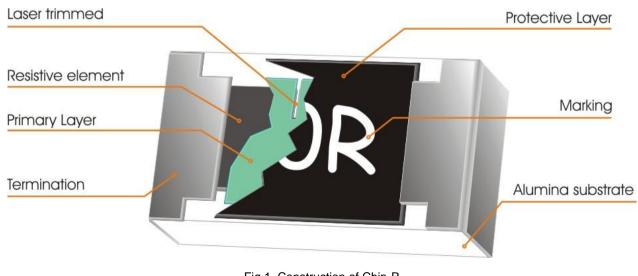


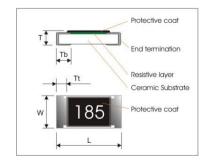
Fig 1. Construction of Chip-R

5. QUICK REFERENCE DATA

Item		General Specification							
Series No.	CR	06	CR	CR05		CR03		CR02	
Size code	12	06	80	05	06	603	04	402	
Resistance Range		1Ω~10MΩ (±5% tolerance), Jumper 1Ω~10MΩ (±1% tolerance), 10Ω ~ 1MΩ (±0.5%, ±0.1% tolerance)							
Resistance Tolerance	E96/E24	E24	E96/E24	E24	E96/E24	E24	E96/E24	E24	
TCR (ppm/°C) 10MΩ ≥R > 10Ω R≤10Ω		≤±100 -200~+400							
Max. dissipation @ T _{amb} =70°C	1/4 W 1/8 W 1/10 W 1/16 W					6 W			
Max. Operation Voltage (DC or RMS)	200V 150V			75V		50V			
Max. Overload Voltage (DC or RMS)	400V 300V 150V 100V				V0V				
Operating Temperature			-5	5 ~ +155°C	;				

TEST CONDITION FOR JUMPER (0 Ω)

Item	CR06	CR05	CR03	CR02	
Power Rating At 70°C	1/4W	1/8W	1/10W	1/16W	
Resistance	MAX.50mΩ				
Rated Current	2A	1.5A	1A	1A	
Peak Current	5A	3.5A	ЗA	2A	
Operating Temperature	-55 ~ +155°C				


Note :

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by

RCWV = $\sqrt{\text{RatedPower} \times \text{Resistance Value}}$ or Max. RCWV listed above, whichever is lower.

6.DIMENSIONS (unit : mm)

	CR06	CR05	CR03	CR02
L	$\textbf{3.10} \pm \textbf{0.10}$	2.00 ± 0.10	1.60 ± 0.10	1.00 ± 0.05
w	1.60 ± 0.10	$\textbf{1.25}\pm\textbf{0.10}$	$\textbf{0.80} \pm \textbf{0.10}$	0.50 ± 0.05
т	0.60 ± 0.15	0.50 ± 0.15	0.45 ± 0.15	0.35 ± 0.05
Tb	0.45 ± 0.20	0.40 ± 0.20	0.30 ± 0.15	0.25 ± 0.10
Tt	0.50 ± 0.20	0.40 ± 0.20	0.30 ± 0.10	0.20 ± 0.10

7. FUNCTIONAL DESCRIPTION

7.1 Product characterization

Standard values of nominal resistance are taken from the E24&E96 series for resistors with a tolerance of $\pm 0.1\%$, $\pm 0.5\%$, $\pm 1\%$, $\pm 5\%$, The values of the E24/E96 series are in accordance with "IEC publication 60063"

7.2 Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

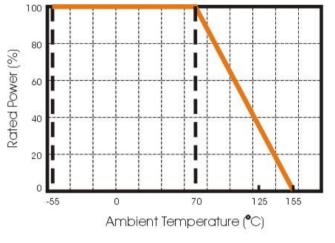


Figure 2 Maximum dissipation in percentage of rated power as a function of the ambient temperature for CR06, CR05, CR03, CR02

7.3 Storage and Handling Conditions:

- 1. Products are recommended to be used up within two years since operation date as ensured shelf life. Check solderability in case shelf life extension is needed.
- 2. To store products with following condition:

Temperature :5 to 40°℃

Humidity :20 to 70% relative humidity

3. Caution:

a.Don't store products in a corrosive environment such as sulfide, chloride gas, or acid.

It may cause oxdization of electrode, which easily be resulted in poor soldering

b.To store products on the shelf and avoid exposure to moisture.

c.Don't expose products to excessive shock, vibration, direct sunlight and so on

7.4 SOLDERING CONDITION follows J-STD-020D

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

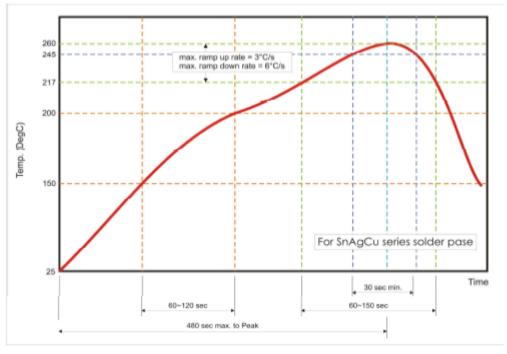


Fig 3. Infrared soldering profile for Chip Resistors

7.5 TEST AND REQUIREMENTS

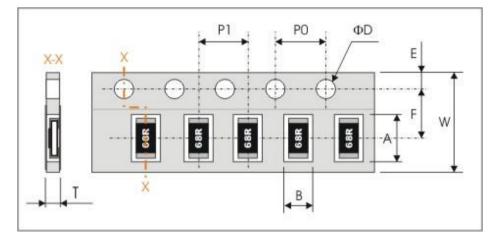
Essentially all tests are carried out according to the schedule of IEC publication 115-8, category LCT/UCT/56(rated temperature range : Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also meets the requirements specified by EIA, EIAJ and JIS.

The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, subclause 5.3. Unless otherwise specified, the following value supplied :

Temperature: 15°C to 35°C.

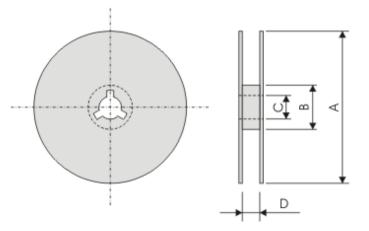
Relative humidity: 45% to 75%.

Air pressure: 86kPa to 106 kPa (860 mbar to 1060 mbar).


All soldering tests are performed with midly activated flux.

		REQUIREMENT	
TEST	PROCEDURE / TEST METHOD	Resistor	0Ω
Electrical	- DC resistance values measurement	Within the specified tolerance	
Characteristics	- Temperature Coefficient of Resistance (T.C.R)	Refer to "QUICK REFERENCE	
	Natural resistance change per change in degree centigrade.	DATA"	
JISC5201-1: 1998 Clause 4.8	$\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)} t_1 : 20^\circ\text{C} + 5^\circ\text{C} - 1^\circ\text{C}; \ t_2 : -55^\circ\text{C or } + 155^\circ\text{C}$		<50mΩ
	R ₁ : Resistance at reference temperature (20°C+5°C/-1°C)		
	R_2 : Resistance at test temperature (-55°C or +155°C)		
Resistance to soldering heat(R.S.H) JISC5201-1:1998 Clause 4.18	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 260 $^\circ\!C\pm\!5^\circ\text{C}$	±5%:∆R/Rmax.±(1%+0.05Ω) ±1%:∆R/Rmax.±(0.5%+0.05Ω) no visible damage	<50mΩ
Solderability	Un-mounted chips completely immersed for 2±0.5 second in a SAC	95% coverage min., good tinnin	a and no
JISC5201-1: 1998	solder bath at 235℃±5℃	visible damage	g and no
Clause 4.17		visible dallage	
Temperature cycling	30 minutes at -55°C±3°C, 2~3 minutes at 20°C+5°C-1°C, 30 minutes at	±5%: ΔR/R max. ±(1%+0.05Ω)	
JISC5201-1: 1998	+155°C±3°C, 2~3 minutes at 20°C+5°C-1°C, total 5 continuous cycles	±1%:∆R/Rmax.±(0.5%+0.05Ω)	<50mΩ
Clause 4.19		No visible damage	
High Temperature	1000+48/-0 hours; without load in a temperature chamber	±5%:ΔR/Rmax.±(2%+0.1Ω)	
Exposure	controlled 155±3°C	±1%:ΔR/Rmax.±(1%+0.1Ω)	<50mΩ
MIL-STD-202		No visible damage	<0011132
method 108			
Bending strength	Resistors mounted on a 90mm glass epoxy resin PCB(FR4), bending	±5%:∆R/Rmax.±(1%+0.05Ω)	
JISC5201-1: 1998	once 3mm for 10sec, 5mm for CR02	±1%:ΔR/Rmax.±(1%+0.05Ω)	<50mΩ
Clause 4.33		No visual damaged	
Adhesion	Pressurizing force: 5N, Test time: 10±1sec.	No remarkable damage or remo	val of the
JISC5201-1: 1998		terminations	
Clause 4.32			
Short Time Overload	2.5 times RCWV or max. overload voltage, for 5seconds	±5%: ΔR/R max. ±(2%+0.05Ω)	
(STOL)		±1%: ΔR/R max. ±(1%+0.05Ω)	50 0
JISC5201-1: 1998		No visible damage	<50mΩ
Clause 4.13			
Load life in Humidity	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber	±5%: ΔR/R max. ±(2%+0.1Ω)	
JISC5201-1: 1998	controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and	±1%: ΔR/R max. ±(1%+0.1Ω)	<50mΩ
Clause 4.24	0.5 hours off	No visible damage	
Load life (endurance)	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller	±5%: ΔR/R max. ±(3%+0.1Ω)	
JISC5201-1: 1998	70±2°C, 1.5 hours on and 0.5 hours off	±1%: ΔR/R max. ±(1%+0.1Ω)	<50mΩ
Clause 4.25		No visible damage	
Insulation Resistance JISC5201-1: 1998	Apply the maximum overload voltage (DC) for 1 minute	R≧10GΩ	I
Clause 4.6	Apply the maximum everlead valtage (AC) for 4 minute	No broakdown ar flachavar	
Dielectric Withstand Voltage JISC5201-1: 1998 Clause 4.7	Apply the maximum overload voltage (AC) for 1 minute	No breakdown or flashover	

8.PACKAGING


8.1 Paper Tape specifications (unit :mm)

Series No.	А	В	W	F	E
CR06	3.60±0.20	2.00±0.20			
CR05	2.40±0.20	1.65±0.20	8.00±0.30	3.50±0.20	1.75±0.10
CR03	1.90±0.20	1.10±0.20	8.00±0.30	3.50±0.20	1.75±0.10
CR02	1.20±0.10	0.70±0.10			

Series No.	P1	P0	ΦD	Т
CR06/CR05	4.00±0.10			Max. 1.0
CR03		4.00±0.10	Φ 1.50 ^{+0.1} _{-0.0}	0.65±0.05
CR02	2.00±0.10			0.40±0.05

8.2 Reel dimensions

Symbol	А	В	С	D
7" reel	Φ178.0±2.0	Φ60.0±1.0	13.0±0.2	9.0±0.5
10" reel	Φ254.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5
13" reel	Ф330.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5

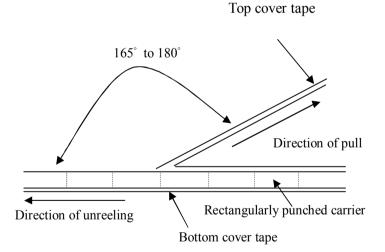
8.3 Taping Quantity:

Tape			Pape	Embossed Tape	Bulk			
	4	lmm pit	ch	2	mm pite	ch	4mm pitch	Cassette
	7"	10"	13"	7"	10"	13"	7"	
0201	-	-	-	15000	-	-	-	-
0402	-	-	-	10000	20000	40000		50000
0603	5000	10000	20000	10000	20000	-	-	20000
0805	5000	10000	20000	-	-	-	-	10000
1206	5000	10000	20000	-	-	-	-	5000

9. Performance of Taping :

9.1. Strength of Carrier Tape and Top Cover Tape

-Carrier Tape


When a tensile force 1.02kgf is applied in the direction of unreeling the tape, the tape shall withstand this force.

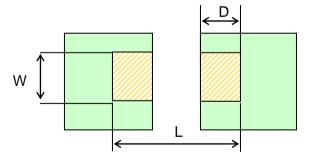
-Top cover Tape

When a tensile force 1.02kgf is applied to the tape, the tape shall withstand this force.

9.2 Peel Force of Top Cover Tape

Unless otherwise specified, the peel force of top cover tape shall be 10.2 to 71.4 g f when the top cover tape is pulled at a speed of 300mm/min with the angle between the taped during peel and the direction of unreeling maintained at 165 to 180°as illustrated in Fig.

10.Resistance Marking Explanation:


1206 (3216)	3-digits marking	4-digits marking		
0805 (2012)	3-digits marking	4-digits marking		
0603 (1608)	3-digits marking 3-digits marking			
0402(1005)	N0 MARKING			

Size	E-24	E-96
Jumper Series	0	0
0402		
No marking Series		
0603	683	683
0805	683	6802
1206	17.8	17R8

Example

RESISTANCE	10Ω	12Ω	100Ω	6800Ω	47000Ω
3-digits marking	100	120	101	682	473
4-digits marking	10R0	12R0	1000	6801	4702

11. Recommended Solder Pad Dimensions

Туре	W (mm)	L (mm)	D (mm)
01(0201)	0.25~0.3	0.7~0.9	0.3~0.4
02(0402)	0.5~0.6	1.4~1.6	0.4~0.6
03(0603)	0.7~0.9	2.0~2.2	0.8~1.0
05(0805)	1.0~1.4	3.2~3.8	0.9~1.4
06(1206)	2.0~2.4	4.4~5.0	1.2~1.8
10(1210)	2.0~2.4	4.4~5.0	2.3~3.5
0A(2010)	3.3~3.7	5.7~6.5	2.3~3.5
12(2512)	3.6~4.0	7.8~8.6	2.3~3.5

Note :

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and pinted-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.