Aillen

ALTERNATION HISTORY RECORDS 变更记录

Date 日期	Version 版本	Mark 标记	Page 页码	Description 描述	Drafter 制定者	Approver 审批者
2019-05-10	В	/	/	In release 换版发行	余大光	彭旭

1. Part Numbering System:

<u>CL</u>	<u>05</u>	$rac{\mathbf{J}}{ }$	$\frac{\mathbf{B}}{ }$	<u>R22</u>
Series Name Chip Resistor: CL: Thick Film Low Ohm	Type Inch (mm) 02-0402(1005) 03-0603(1608) 05-0805(2012) 06-1206(3216)	Tolerance $B=\pm 0.1\%$ $D=\pm 0.5\%$ $F=\pm 1\%$ $J=\pm 5\%$ $P: Jumper$	Package A=4Kpcs/7"Reel B=5Kpcs/7"Reel C=10Kpcs/7"Reel M=15Kpcs/7"Reel D=10Kpcs/10"Reel E=20Kpcs/10"Reel	Resistance R22=0.22Ω 10K=10KΩ 10K5=10.5KΩ 100K=100KΩ 1M2=1.2MΩ

2. FEATURE

- 1) High power rating and low TCR
- 2) High reliability and stability
- 3) Reduced size of final equipment
- 4) RoHS exemption free and Lead free products

3. APPLICATION

- 1) Power supply
- 2) PDA
- 3)Digital meter
- 4) Computer
- 5) Automotives
- 6) Battery charger
- 7) DC-DC power converter

Page 1 of 8 May 2019

4. DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is Tin (lead free) alloy.

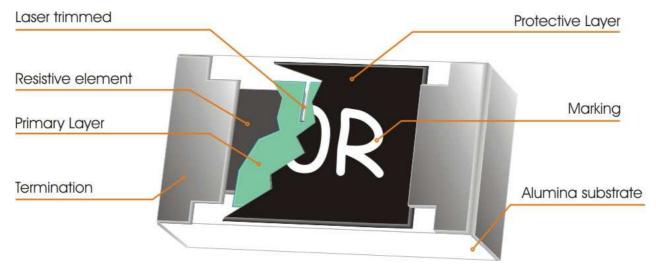
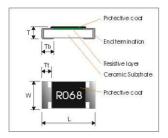
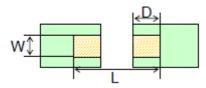


Fig 1. Construction of Chip-R


5. QUICK REFERENCE DATA

Item		General Specification						
Series No.	CL12	CL0A	CL10	CL06	CL05	CL03		
Size code	2512	2010	1210	1206	0805	0603		
Resistance Tolerance		±5%, ±1%						
Resistance			0.010Ω ~ 0.910Ω,			$0.050\Omega \sim 0.910\Omega$,		
Range		E24 E24						
TCR (ppm/°C)	10 - 20mΩ: ±1000 22 - 39mΩ: ±600 40 - 47mΩ: ±200 50 - 91mΩ: ±100 100 - 910mΩ: ±100	10 - 20mΩ: ±1000 22 - 39mΩ: ±600 40 - 47mΩ: ±200 50 - 91mΩ: ±100 100 - 910mΩ: ±100	10 - 20mΩ: ±600 22 - 39mΩ: ±400 40 - 47mΩ: ±200 50 - 91mΩ: ±100 100 - 910mΩ: ±100	10 - 20mΩ: ±1000 22 - 39mΩ: ±600 40 - 47mΩ: ±200 50 - 91mΩ: ±100 100 - 910mΩ: ±100	10 - 20mΩ: ±1000 22 - 39mΩ: ±600 40 - 47mΩ: ±400 50 - 91mΩ: ±200 100 - 910mΩ: ±100	50 - 91mΩ: ±400 100 - 910mΩ: ±200		
Max. dissipation at T _{amb} =70°C	1 W	3/4W	2/3 W	1/3 W	1/4 W	1/8 W		
Operation temperature	-55 ~ +155'C							

Page 2 of 8 May 2019



6. MECHANICAL DATA

Symbol	CL12	CL0A	CL10	CL06	CL05	CL03
L	6.30 ± 0.20	5.00 ± 0.20	3.10 ± 0.10	3.10 ± 0.10	2.00 ± 0.10	1.60 ± 0.10
W	3.10 ± 0.20	2.50 ± 0.20	2.60 ± 0.10	1.60 ± 0.10	1.25 ± 0.10	0.80 ± 0.10
Т	0.60 ± 0.15	0.60 ± 0.10	0.55 ± 0.10	0.55 ± 0.10	0.50 ± 0.10	0.45 ± 0.10
Tt	0.60 ± 0.25	0.60 ± 0.25	0.50 ± 0.25	0.50 ± 0.25	0.40 ± 0.20	0.30 ± 0.20
Tb	0.90 ± 0.25	0.60 ± 0.25	0.50 ± 0.25	0.50 ± 0.25	0.40 ± 0.20	0.30 ± 0.20

6.1 RECOMMENDED SOLDERING PAD

Symbol	CL12	CL0A	CL10	CL06	CL05	CL03
WL	3.70mm	3.00mm	3.00mm	1.80mm	1.30mm	0.90mm
D	1.60mm	1.50mm	1.30mm	1.30mm	1.15mm	1.00mm
L	7.60mm	6.80mm	4.70mm	4.70mm	3.50mm	3.00mm

Page 3 of 8 May 2019

7. FUNCTIONAL DESCRIPTION

7.1 Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of $\pm 5\%$ & $\pm 1\%$. The values of the E24 series are in accordance with "IEC publication 60063".

7.2 Derating curve

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

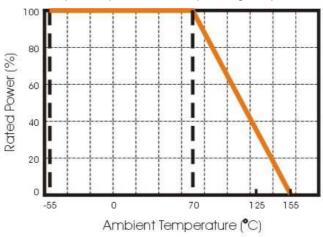


Figure 2 Maximum dissipation in percentage of rated power as a function of the ambient temperature

7.3 MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

7.4 SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

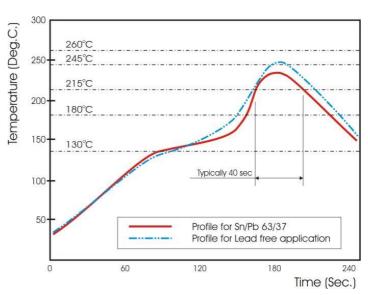
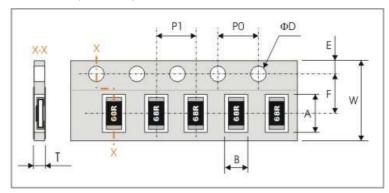


Fig 3. Infrared soldering profile

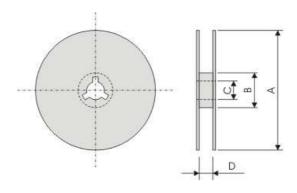
Page 4 of 8 May 2019

7.5 TEST AND REQUIREMENTS(JIS C 5201-1 : 1998)


TEST	PROCEDURE	REQUIREMENT
Temperature Coefficient of Resistance(T.C.R) Clause 4.8	Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\!\!\times\!10^6 \; \text{(ppm/°C)} \mathbf{t_1:25^{\circ}C}$	Refer to "QUICK REFERENCE DATA"
	R₁: Resistance at reference temperature 25℃ R₂: Resistance at test temperature 155℃	
Short time overload (S.T.O.L) Clause 4.13	Permanent resistance change after a 5second application of a 5 times rated power.	J: Δ R/R max. \pm (2%+0.5m Ω) F: Δ R/R max. \pm (1%+0.5m Ω)
Solderability Clause 4.17	Un-mounted chips completely immersed for 3±0.5 second in a SAC solder bath at 245°C±2°C	good tinning (>95% covered) no visible damage
Resistance to soldering heat(R.S.H) Clause 4.18	Un-mounted chips completely immersed for 10±1 second in a SAC solder bath at $260^{\circ}\text{C}\pm5^{\circ}\text{C}$	no visible damage J: Δ R/R max. \pm (1%+0.5m Ω) F: Δ R/R max. \pm (0.5%+0.5m Ω)
Temperature cycling Clause 4.19	30 minutes at -55°C±3°C, 2~3 minutes at 20℃+5℃-1℃, 30 minutes at +155°C±3°C, 2~3 minutes at 20℃+5℃-1℃, total 5 continuous cycles	no visible damage J: Δ R/R max. \pm (1%+0.5m Ω) F: Δ R/R max. \pm (0.5%+0.5m Ω)
Load life (endurance) Clause 4.25	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller 70±2°C, 1.5 hours on and 0.5 hours off	J: Δ R/R max. ±(3%+0.5m Ω) F: Δ R/R max. ±(1%+0.5m Ω)
Load life in Humidity Clause 4.24	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and 0.5 hours off	J: Δ R/R max. \pm (3%+0.5m Ω) F: Δ R/R max. \pm (1%+0.5m Ω)
Bending strength Clause 4.33	Resistors mounted on a 90mm glass epoxy resin PCB(FR4); bending : 3mm for 0603/0805, 2mm for 1206 and above sizes, once for 10 seconds	no visible damage J: Δ R/R max. \pm (1%+0.5m Ω) F: Δ R/R max. \pm (0.5%+0.5m Ω)
Adhesion Clause 4.32	Pressurizing force: 5N, Test time: 10±1sec.	No remarkable damage or removal of the terminations
Insulation Resistance Clause 4.6	Test voltage: 100+/-15V	I.R≧1GΩ

Page 5 of 8 May 2019

8. PACKAGING


8.1 Paper Tape specifications (unit :mm)

Series No.	Α	В	W	F	E
CL12	6.70±0.20	3.50±0.20	12.00±0.30		
CL0A	5.50±0.20	2.80±0.20	12.00±0.30		
CL10	3.60±0.20	3.00±0.20		3.50±0.20	1.75±0.10
CL06	3.60±0.20	2.00±0.20	8.00±0.30	3.30±0.20	1.73±0.10
CL05	2.40±0.20	1.65±0.20	0.00±0.30		
CL03	1.90±0.20	1.10±0.20			

Series No.	P1	P0	ΦD	Т
CL12		4.00±0.10		Max. 1.2
CL0A				Max. 1.2
CL10	4.00±0.10		Φ 1.50 $^{+0.1}_{-0.0}$	Max. 1.0
CL06			$\Psi 1.50_{-0.0}$	Max. 1.0
CL05				Max. 1.0
CL03				Max. 0.8

8.2 Reel dimensions

Symbol	А	В	С	D
7" reel	Φ178.0±2.0	Φ60.0±1.0		10.0.1 F (0mm tone)
10" reel	Φ254.0±2.0	Φ100.0±1.0	13.0±0.5	10.0±1.5 (8mm tape) 13.8±1.5 (12mm tape)
13: reel	Ф330.0±2.0	Φ100.0±1.0		13.0±1.3 (12111111 tape)

Page 6 of 8 May 2019

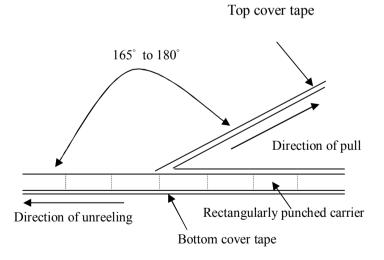
8.3 Taping Quantity:

Tape		Paper Tape					Embossed Tape	Bulk
	4	lmm pit	ch	2:	mm pito	ch	4mm pitch	Cassette
	7"	10"	13"	7"	10"	13"	7"	
0603	5000	10000	20000	10000	20000	-	-	20000
0805	5000	10000	20000	-	-	-	-	10000
1206	5000	10000	20000	-	-	-	-	5000
1210	5000	10000	20000	-	-	-	-	5000
2010	4000	-	-	-	-	-	-	5000
2512	4000	-	-	-	-	-	-	5000

9. Performance of Taping:

9.1. Strength of Carrier Tape and Top Cover Tape

-Carrier Tape


When a tensile force 1.02kgf is applied in the direction of unreeling the tape, the tape shall withstand this force.

-Top cover Tape

When a tensile force 1.02kgf is applied to the tape, the tape shall withstand this force.

9.2 Peel Force of Top Cover Tape

Unless otherwise specified, the peel force of top cover tape shall be 10.2 to 71.4 g f when the top cover tape is pulled at a speed of 300mm/min with the angle between the taped during peel and the direction of unreeling maintained at 165 to 180° as illustrated in Fig.

Page 7 of 8 May 2019

10.Resistance Marking Explanation:

	•
2512 (6432)	4-digits marking
2010 (5025)	4-digits marking
1210 (3225)	4-digits marking
1206 (3216)	4-digits marking
0805 (2012)	4-digits marking
0603 (1608)	3-digits marking

Г	T
Size	E-24 ±5%, ±1%
0603	R50
0805	R150
1206	R150
1210	R150
2010	R150
2512	R150

Example

-			
RESISTANCE	0.10Ω	0.15Ω	0.020Ω
3-digits marking	R10	R15	20M
4-digits marking	R100	R150	R020

Page 8 of 8 May 2019